唐山埔铭矿业有限公司 年产 200 万吨铁精粉尾矿资源综合利用 技改项目竣工环境保护验收报告

建设单位: 唐山埔铭矿业有限公司 二〇二四年十二月

目 录

- 一、项目竣工环境保护验收监测报告
- 二、项目竣工环境保护验收意见
- 三、其他需要说明的事项

唐山埔铭矿业有限公司 年产 200 万吨铁精粉尾矿资源综合利用 技改项目竣工环境保护验收监测报告

建设单位: 唐山埔铭矿业有限公司 二〇二四年十二月

目 录

1	项目概况	1
2	验收依据	3
	2.1 法律法规	3
	2.2 规章规范	3
	2.3 相关文件	3
3	建设项目工程概况	5
	3.1 项目地理位置	5
	3.2 项目基本情况	5
	3.3 主要建设内容	5
	3.4 主要生产设备	8
	3.5 主要原辅材料与能源消耗	9
	3.6 生产工艺流程	9
	3.7 项目变化情况	. 13
	3.8 验收范围	. 14
4	环境保护措施落实情况	. 15
	4.1 污染治理设施落实情况	. 15
	4.2 环境保护设施"三同时"落实情况	22
	4.3 环评批复落实情况	. 25
5	环评主要结论及批复意见	. 26
	5.1 环评主要结论	. 26
	5.2 审批部门审批决定	. 29
6	验收执行标准	. 32
7	验收监测内容	. 35
	7.1 环境保护设施调试效果	.35
	7.2 环境质量监测	. 36
8	质量保证和质量控制	. 37

	8.1 监测项目及分析方法等情况	37
	8.2 质量保证和质量控制	38
9	验收监测结果	39
	9.1 生产工况	39
	9.2 环境保护设施调试效果	39
	9.3 工程建设对环境的影响	42
10	0 验收监测结论	. 44
	10.1 环境保护设施调试效果	44
	10.2 工程建设对环境的影响	45
	10.3 建议	45
1	1 验收结论	45
12	2 建设项目竣工环境保护"三同时"验收登记表	46

1 项目概况

唐山埔铭矿业有限公司成立于2017年12月,位于唐山市曹妃甸中小企业园区庙中路南侧,厂址中心坐标为北纬 39°10′0.30″、东经118°24′14.49″。

2019年7月8日,唐山市曹妃甸区行政审批局对唐山埔铭矿业有限公司年产 200万吨铁精粉项目环境影响报告书进行批复(审批文号为"唐曹审批环境水务 科书[2019]1号"),2022年1月14日,完成竣工环境保护验收。

现有工程选厂尾砂作为建筑材料外售,尾砂中含铁量为27.13%,为进一步提级,提高选别率,减少尾砂排放量,经过多次选矿试验研究,最终确定本次选厂技改项目的浮选工艺和浮选药剂的种类和用量,公司决定进行年产200万吨铁精粉尾矿资源综合利用技改项目。项目占用公司既有用地,不涉及新增占地,利用现有车间、库房改造成强磁扫选车间和浮选车间,对现有尾矿中的细粒级尾矿进行二次选别。主要购置强磁扫选机、强磁扫选精矿输送泵、强磁扫选尾矿输送泵、浮选机、离心(罗茨)鼓风机、药剂添加计量泵、电热水锅炉等设备及相关配套辅助设施等。项目技改后,达到年处理细粒级尾矿26.325万吨的规模。

2024年2月,企业委托河北太硕工程技术咨询有限公司编制了《唐山埔铭矿业有限公司年产200万吨铁精粉尾矿资源综合利用技改项目环境影响报告书》,2024年3月19日,唐山市曹妃甸区行政审批局以唐曹审批环书(2024)4号文对本项目环境影响报告书进行了批复。

2024年3月25日开工建设,2024年10月10日项目建设完成,2024年10月15日 开始调试。企业已变更排污登记,登记编号:91130230MA09H165XM001X。

根据《建设项目环境保护管理条例》、《建设项目竣工环境保护验收暂行办法》、《建设项目环境影响评价文件审批及建设单位自主开展环境保护设施验收工作指引(试行)》及《建设项目竣工环境保护验收技术规范/指南》等相关要求,唐山埔铭矿业有限公司编制了《唐山埔铭矿业有限公司年产200万吨铁精粉尾矿资源综合利用技改项目竣工环境保护验收监测报告》。

项目主要信息见表 1-1。

表 1-1 项目主要信息一览表

· · · · · · · · · · · · · · · · · · ·					
项目	内容				
项目名称	唐山埔铭矿业有限	唐山埔铭矿业有限公司年产 200 万吨铁精粉尾矿资源综合利用技改项目			
单位名称		唐山埔铭矿业有限:	公司		
项目性质		技改			
建设地点	唐山市曹妃甸装备制造园区唐山埔铭矿业有限公司现有厂区内				
开工时间	2024年3月25日	竣工时间	2024年10月10日		
调试时间	2024年10月15日	监测时间	2024年11月8日~11月9日、11 月13日~11月14日		
环评报告	编制单位	河北太硕工	程技术咨询有限公司		
编制单位	编制日期	2	024年2月		
	审批文号	唐曹审批环书(2024)4号			
环评报告 审批部门	审批部门	唐山市曹	妃甸区行政审批局		
	审批日期	2024	4年3月19日		

2 验收依据

2.1 法律法规

- (1)《中华人民共和国环境保护法》(2015年1月1日);
- (2) 《中华人民共和国环境影响评价法》(2018年12月29日);
- (3) 《中华人民共和国大气污染防治法》(2018年10月26日):
- (4)《中华人民共和国水污染防治法》(2018年1月1日);
- (5)《中华人民共和国噪声污染防治法》(2022年6月5日);
- (6)《中华人民共和国固体废物污染环境防治法》(2020年9月1日);
- (7) 《中华人民共和国土壤污染防治法》(2019年1月1日);
- (8) 《中华人民共和国清洁生产促进法》(2012年7月1日):
- (9) 《中华人民共和国节约能源法》(2018年10月26日);
- (10) 《中华人民共和国循环经济促进法》(2018年10月26日);
- (11)《中华人民共和国土地管理法》(2020年1月1日);
- (12) 《中华人民共和国水土保持法》(2011年3月1日);
- (13) 《中华人民共和国水法》(2016年7月2日)。

2.2 规章规范

- (1) 《建设项目环境保护管理条例》(国务院第 682 号令, 2017 年 7 月 16 日):
- (2) 《建设项目竣工环境保护验收暂行办法》(国环规环评[2017]4号), 2017年11月20日;
- (3)《建设项目环境影响评价文件审批及建设单位自主开展环境保护设施 验收工作指引(试行)》:
- (4)《建设项目竣工环境保护验收技术指南 污染影响类》(生态环境部 公告 2018 年 5 月 5 月 16 日;
- (5) 关于印发《污染影响类建设项目重大变动清单(试行)》的通知(环办环评函[2020]688 号)。

2.3 相关文件

(1)《唐山埔铭矿业有限公司年产200万吨铁精粉尾矿资源综合利用技改项

目环境影响报告书》,2024年2月;

- (2)《关于唐山埔铭矿业有限公司年产200万吨铁精粉尾矿资源综合利用技 改项目环境影响报告书的批复》(唐曹审批环书〔2024〕4号);
- (3)唐山埔铭矿业有限公司年产200万吨铁精粉尾矿资源综合利用技改项目检测报告(唐瑞坤检字(环委)第202411-041号)。

3 建设项目工程概况

3.1 项目地理位置

项目位于唐山市曹妃甸装备制造园区,中心地理坐标为东经118°24′14.49″,北纬39°10′0.30″。项目东侧为唐山瑞翔源新材料有限公司,南侧为唐山曹妃甸综合物流中心,西侧为唐山曹妃甸区国控城市更新有限公司,北侧为庙中路,隔路为唐山亿昌热能科技有限公司。

3.2 项目基本情况

- (1)项目名称: 年产200万吨铁精粉尾矿资源综合利用技改项目。
- (2)建设单位: 唐山埔铭矿业有限公司。
- (3)建设地点:项目位于唐山市曹妃甸装备制造园区唐山埔铭矿业有限公司现有厂区内。
 - (4)建设性质: 技改。
- (5)项目投资:项目总投资1272.7万元,其中环保投资约63.635万元,占工程总投资的5%。
 - (6)生产规模及产品方案: 年处理细粒级尾矿26.325万吨。 产品方案见表3.2-1。

产品名称 TFe 品位 (%) 产量 (万 t/a) 备注 强磁扫选精矿 52 2.33 含水率 12% 浮选精矿 52. 8.36 含水率 12% 细粒尾砂 10.12 15.635 含水率 12%

表 3.2-1 技改项目产品方案

3.3 主要建设内容

项目占用公司既有用地,不涉及新增占地,对现有生产车间、库房进行改造,建设强磁扫选车间和浮选车间,对现有尾矿中的细粒级尾矿进行二次选别。主要购置强磁扫选机、强磁扫选精矿输送泵、强磁扫选尾矿输送泵、浮选机、离心(罗茨)鼓风机、药剂添加计量泵、电热水锅炉、精矿浓密机、精矿压滤机等设备及相关配套辅助设施等。

项目组成情况见表 3.3-1。

表 3.3-1 项目组成对比情况一览表

工程分类	组成		环评拟统	建设内容		实际建设内容	符合性
主体工程	强磁扫选车间	利用现有的	尾矿脱水车间西值	则改造,安装强磁扫选机2台	在现有的尾矿	脱水车间西侧改造,安装了强磁扫选机2台	符合
土冲上性	浮选车间	利用现有的原料库房 2 南侧改造,安装浮选机等设备		在现有的原	料库房 2 南侧改造,安装了浮选机等设备	符合	
	药剂库及制备 间	位于浮选车间	内,用于 EMT-2	0、S-02、Na ₂ CO ₃ 的储存和制备	位于浮选车间内	,用于 EMT-20、S-02、Na ₂ CO ₃ 的储存和制备	符合
	精矿浓缩	新增	l 台φ12m 浓密机	,用于浮选精矿的浓缩	新建了1	台φ12m 浓密机,用于浮选精矿的浓缩	符合
辅助工程	管道	度为115m,浮选尾矿	管道长度为 60m	下路为 DN150mm,强磁扫选尾矿管道长;精矿管路为 DN200mm,浮选精矿管 I325mm,回水管道长度为 73m。	扫选尾矿管道长 矿管路为 DN20	,材质为钢管,尾矿管路为 DN150mm,强磁度约为 115m,浮选尾矿管道长度为 60m;精0mm,浮选精矿管道长度约为 227m;回水管路以325mm,回水管道长度约为 73m。	符合
	供电		由就近日	电网引入		由就近电网引入	符合
	供水		市政	管网		市政管网	符合
公用工程	排水	浮选泡沫冲洗水经尾矿压滤后经回水池沉淀后循环利用,不外排;生活污水 经化粪池预处理,食堂废水经油水分离器预处理后,排入曹妃甸城区污水处 理厂。		排;生活污水经	,	符合	
	供热	技改	项目车间无需供养	热,不新增取暖建筑物		技改项目车间无供热设施	符合
		铁精粉堆存及装卸	j	封闭精矿库房+喷雾抑尘		封闭精矿库房+喷雾抑尘	符合
		细粒尾砂堆存及装 卸	į	封闭尾矿库房+喷雾抑尘		封闭尾矿库房+喷雾抑尘	符合
	废气	药剂投加	1	封闭浮选车间+喷雾抑尘		封闭浮选车间+喷雾抑尘	符合
环保工程		道路运输	运输车辆车斗列	采用苫布苫盖,地面硬化,洒水降尘等; 设置洗车台	运输车辆车斗	采用苫布苫盖,地面硬化,洒水降尘等;设置 洗车台	符合
		食堂油烟	经油烟净化器	器净化通过排气筒至食堂的楼顶排放	利旧现有食堂,	食堂油烟经油烟净化器净化通过排气筒排放	符合
		浮选泡沫冲洗水	排)	现有回水池回用于生产		排入现有回水池回用于生产	符合
	废水	生活 盥洗、冲厕	/	排入市政管网进入曹妃甸区污水处	/	排入市政管网进入曹妃甸区污水处理厂处	符合
		污水 食堂废水	油水分离器	理厂处理	油水分离器	理	符合
	噪声	采取基	础减振、厂房隔	声、鼓风机安装消声器	采取了基础》	城振、厂房隔声、鼓风机设置消声器等措施	符合

工程分类	组成		环评拟建设内容	实际建设内容	符合性
		生产 细粒尾砂	作为建筑材料外卖或填埋、土地复垦	用于园区填方造地或作为建筑材料外卖	符合
		药剂 投加 废包装袋	清洗后外售废品回收站	清洗后外售废品回收站	符合
	固废	设备 维修 保养 皮润滑油、 油桶	废 采用专用容器储存,暂存在危废间内,定期交由有 危废处置资质单位进行处理	· 采用专用容器储存,暂存在厂区现有危废间内,定期交 由有危废处置资质单位进行处理	符合
		职工 生活垃圾	交由环卫部门处理	交由环卫部门处理	符合
				依托现有的回水池,浮选泡沫冲洗水经尾矿压滤后经回水 池沉淀后循环利用,不外排。回水池的尺寸27m×34m×5m ,容积4590m³。	
	雨水收集池	依托现有的	雨水收集池。雨水收集池的尺寸15m×15m×5m。	依托现有的雨水收集池。雨水收集池的尺寸15m×15m×5m。	符合
依托工程	精矿脱水		依托厂区现有的精矿脱水系统	依托厂区现有的精矿脱水系统	符合
似九二柱	尾矿脱水		依托厂区现有的尾矿压滤系统	依托厂区现有的尾矿压滤系统	符合
	危废间		依托厂区现有的12m ² 危废暂存间1座	依托厂区现有危废暂存间1座	符合
	九组织管控措 施		長颗粒物在线监测仪 8 个,监测 TSP、PM ₁₀ 、PM _{2.5} 。 设施 1 套、精矿库房出口现有洗车设施 3 套,现有内部车辆	现有工程厂界已安装颗粒物在线监测仪 8 个,监测 TSP、PM ₁₀ 、PM ₂₅ 。 厂区出口现有洗车设施 1 套、精矿库房出口现有洗车设施 3 套,现有内部车辆洗车设施 1 套。	符合

3.4 主要生产设备

项目技改项目主要生产设备、设施见表 3.4-1。

表 3.4-1 技改项目主要生产设备、设施一览表

		3.4-1 汉以次日上3		文田、 久旭		
序	11. by by 11by	环评要求		项目实际建设情况		符合
号	设备名称	型号、规格型号	台数	型号、规格型号	台数	性
_		强磁	扫选车间]		'
1	强磁扫选机	LHGC2.5FT.00 (S)	2	LHGC2.5FT.00 (S)	2	符合
2	强磁扫选精矿输送 泵(扫精- φ26m 浓 密机)	渣浆泵	1	渣浆泵	1	符合
3	强磁扫选尾矿输送 泵(扫选尾矿-搅拌 槽)	渣浆泵	1	渣浆泵	1	符合
=		浮选车	间			
1	斜板浓密机	-	-	20m×9m×15m	1	车间 外增 加 1 台
2	浮选调浆搅拌槽	φ2500×3000	2	φ2500×3000	2	符合
3	浮选机 (粗选)	XCF/KYF-16, 双侧刮泡	4	XCF/KYF-16, 双侧刮泡	4	符合
4	浮选机 (扫选)	XCF/KYF-16, 双侧刮泡	2	XCF/KYF-16, 双侧刮泡	2	符合
5	浮选机 (精一)	XCF/KYF-16, 双侧刮泡	3	XCF/KYF-16, 双侧刮泡	3	符合
6	浮选机 (精二)	XCF/KYF-16, 双侧刮泡	2	XCF/KYF-16, 双侧刮泡	2	符合
	离心 (罗茨) 鼓风	C100-1.28,Q=100m³/h, 出口升压 28Kpa	2	ZQK-75,Q=100m³/min, 出口压力 129.3Kpa	2	符合
7	机	附:消声器、阀门及压力 表等	2	附:消声器、阀门及压力 表等	2	符合
8	精矿输送泵 (泡沫 泵) (精矿→φ12m 浓密机或φ26m 浓 密机)	Q=234m ³ /h, H=28m 泡 沫系数 3, 400tpd	2	Q=234m³/h, H=28m 泡 沫系数 3, 400tpd	2	符合
9	尾矿输送泵(尾矿 → φ24m 浓密机)	Q=80-100m ³ /h, H=10m	2	Q=80-100m ³ /h, H=10m	2	符合
三	药剂制:		剂制备			
1	药剂制备槽(碳酸 钠)	φ2000×3000	2	φ2000×3000	2	符合
2	药剂制备槽 (S-02)	φ2000×3000	2	φ2000×3000	2	符合
3	药剂制备槽 (EMT-20)	φ2000×3000 保温	2	φ2000×3000 保温	2	符合
4	药剂添加计量泵 (碳酸钠)	螺杆计量泵 Q=50~800L/h,H=10m	2	螺杆计量泵 Q=50~800L/h,H=10m	1	减少 1 台
5	药剂添加计量泵 (S-02)	螺杆计量泵 Q=120~150L/h,H=10m	5	螺杆计量泵 Q=120~150L/h,H=10m	4	减少 1 台

序	J.L. 夕 夕 45	环评要求		项目实际建设情况		符合
号	设备名称	型号、规格型号	台数	型号、规格型号	台数	性
6	药剂添加计量泵	螺杆计量泵	4	螺杆计量泵	3	减少
	(EMT-20)	Q=120~150L/h, H=10m	7	Q=120~150L/h, H=10m	3	1台
_	. I. M. I. AH I.Y. Z #7 +H- \	加热能力: 5m³/8h 配套约		加热能力: 5m³/8h 配套约		berter A
7	电热水锅炉(配药)	5m³ 水箱	1	10m³ 水箱	1	符合
8	液下泵	40QV-SP	1	40QV-SP	1	符合
9	起重机	Q=10t	1	Q=10t	1	符合
四		精矿	浓缩过滤			
1	精矿浓密机	φ12m,钢壳/高架	1	φ12m,钢壳/高架	1	符合
	精矿浓密机底流输					
2	送泵(浓密机→压	$Q=40m^3/h$, $H=30m$	2	$Q=40m^3/h$, $H=30m$	2	符合
	滤缓冲槽)					
五.	精矿及尾矿脱丸		((全部(衣托原有)		
1	盘式过滤机	GPT-60m ²	6	GPT-60m ²	6	符合
2	压滤机	XMZG500/2000-U	3	XMZG500/2000-U	3	符合
3	精矿溢流浓缩	NXZ-26,钢壳	1	NXZ-26,钢壳	1	符合
4	尾矿预浓缩	NXZ-36, 钢壳	1	NXZ-36, 钢壳	1	符合

3.5 主要原辅材料与能源消耗

主要原辅材料与能源消耗见表 3.5-1。

表 3.5-1 主要原辅材料与能源消耗一览表

序号	名称	单位	消耗量	备注
1	细粒级尾矿	万 t/a	26.325	品位 27.13%,来自于现有工程选厂赤铁矿、磁矿的磁选尾矿(即细粒级尾矿),
	74(1-20) (1)) , , u u	20.323	粒径-200 目
2	碳酸钠	t/a	394.875	1500g/t,粉状,袋装,25kg/袋
3	S-02(改性水玻璃与六偏磷酸钠的组合药剂)	t/a	434.363	液状,30m³储罐储存,直接买的复配好的成品
4	EMT-20(以氧化石蜡皂及脂肪 酸皂为核心原料复配而成)	t/a	276.413	1050g/t,直接买的复配好的成品
5	水	m ³ /a	10446	水源来自管网。
6	电	万 kwh/a	312.32	当地电网供给
7	润滑油	t/a	0.4	200L/桶
8	PAM	t/a	20	25kg/袋,用于浓密机

3.6 生产工艺流程

技改工程的原料为现有选厂赤铁矿、磁矿的磁选尾矿(旋流器分级溢流), 即细粒级尾矿进入本项目。

(1)磁选尾矿强磁扫选

选厂磁选尾矿经现有Φ36m 尾矿浓密机预浓缩后,渣浆泵送至现有的 3 台旋流器(JYG250-4-XK)进行尾矿粗细分级,旋流器底流经脱水筛脱水后,粗粒尾矿皮带输送至尾矿库房暂存;细粒级尾矿(旋流器分级溢流)自流至新增加的 2 台立环强磁选机(LHGC2.5FT.00(S))进行扫选作业。强磁扫选精矿进入现有的Φ26m 浓密机,强磁扫选尾矿泵送至斜板浓密机。

(2)斜板浓密机

强磁扫选尾矿泵送至斜板浓密机进行浓缩沉淀,浓缩后泵入浮选再选系统,斜板浓密机溢流水返回现有Φ36m 尾矿浓密机。

(3)细粒级尾矿浮选系统

①搅拌

经浓缩的尾矿泵送至浮选车间,经新增加的2个浮选调浆搅拌罐(φ2500×3000)进行搅拌。

②浮选

混匀的尾矿浆由溢流口排出至新增加的由 11 台浮选机 (XCF/KYF-16)组成的"一粗、一扫、两精"的浮选系统。通过浮选机叶轮旋转,产生离心作用形成负压,一方面吸入充足的空气与矿浆混合,一方面搅拌矿浆与药物混合,同时细化泡沫,使矿物粘合泡沫之上,浮到矿浆面再形成矿化泡沫。浮选时间在 5-10min,得到浮选精矿和浮选尾矿。

粗选过程碳酸钠、水玻璃、捕收剂(EMT-20)在药剂制备槽(Φ2000×3000)制备(先加入水,后加入药剂进行配制)后分别经药剂添加计量泵泵入浮选机。 捕收剂(EMT-20)需要采用温水配药,药剂制备槽需要保温,采用电热水锅炉。 鉴于捕收剂 EMT-20 良好的低温效能,浮选温度尽量控制在 15℃-45℃。

(4)精矿浓缩过滤系统

①强磁扫选精矿

强磁扫选精矿采用渣浆泵直接输送至现有的 1 台 Φ 26m 精矿浓密机,与选矿厂精矿混矿,进入现有的盘式过滤机压滤,精矿由皮带输送至精矿库房。

②浮选精矿

浮选精矿采用渣浆泵输送至新增 1 台 φ 12m 精矿浓密机进行浓缩,浓缩底流

泵送至现有的盘式过滤机给料缓冲槽,由给料泵输送至现有的盘式过滤机压滤, 精矿由皮带输送至精矿库。

此外,浮选精矿可直接泵送至现有 1 台 Φ 26m 精矿浓密机,与强磁扫选精矿一起进入现有的 1 台 Φ 26m 精矿浓密机,与选矿厂精矿混矿,进入现有的盘式过滤机压滤,精矿由皮带输送至精矿库房。

(5)浮选尾矿过滤系统

浮选尾矿经泵输送至现有 1 台 Φ 24m 细粒尾矿浓密机,尾矿经浓密机浓缩后,进入现有尾矿压滤处理系统,细粒级尾矿经压滤机压滤后,皮带输送至尾矿库房暂存。

此过程主要产排污节点为药剂投加产生的颗粒物 G; 磁选机噪声 N1、浮选机噪声 N2-N4; 浓密机排出的废水 W1、浮选泡沫冲洗废水 W2; 压滤产生的细粒尾砂、药剂包装产生的废包装袋。

技改项目生产工艺流程及产排污节点见图 3.6-1。

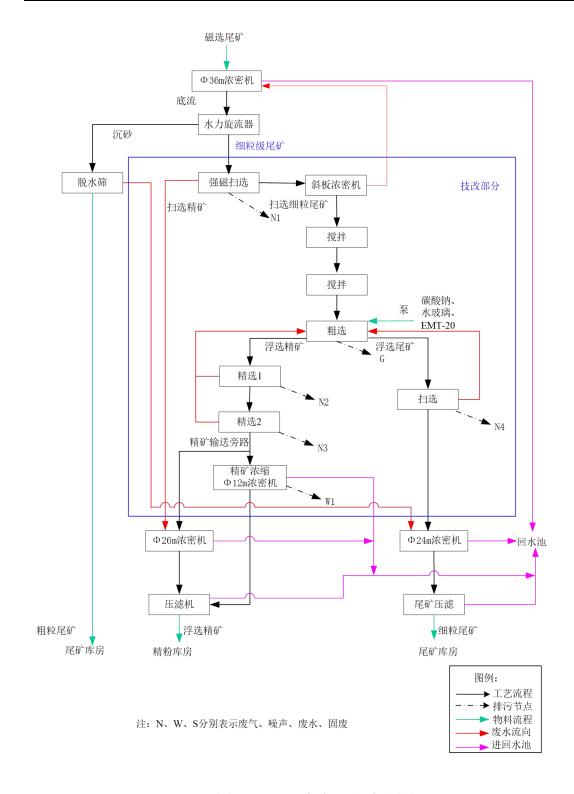


图 3.6-1 生产工艺流程图

3.7 项目变化情况

- 1、为保证浮选效率,在强磁扫选工序后增加 1 个斜板浓密机,对强磁扫选 后的尾矿进行浓缩处理后再进入浮选系统,斜板浓密机溢流水返回现有Φ36m 尾 矿浓密机,未新增污染物。
 - 2、药剂添加计量泵减少3台。

项目变动情况与污染影响类建设项目重大变动清单对比情况见表 3.7-1。

表 3.7-1 项目变动情况与重大变动清单对比一览表

	衣 3./-1 项目受动情况与里人受动情事对比一见衣					
《污染影	响类建设项目重大变动清单(试行)》的通知(环 办环评函[2020]688 号)内容	项目实际建设情况	是否属于 重大变动			
性质	1.建设项目开发、使用功能发生变化的。	无变化	否			
	2.生产、处置或储存能力增大 30%及以上的。	无变化	否			
	3.生产、处置或储存能力增大,导致废水第一类 污染物排放量增加的。	无变化	否			
规模	4.位于环境质量不达标区的建设项目生产、处置或储存能力增大,导致相应污染物排放量增加的(细颗粒物不达标区,相应污染物为二氧化硫、氮氧化物、可吸入颗粒物、挥发性有机物;臭氧不打包区,相应污染物为氮氧化物、挥发性有机物;其他大气、水污染物因子不达标区,相应污染物为超标污染因子);位于达标区的建设项目生产、处置或储存能力增大,导致污染物排放量增加10%及以上的。	无变化	否			
地点	5.重新选址;在原厂址附件调整(包括总平面布置变化)导致环境防护距离范围变化且新增敏感点的。	无变化	否			
生产工艺	6.新增产品品种或生产工艺(含主要生产装置、设备及配套设施)、主要原辅材料、燃料变化,导致以下情形之一: (1)新增排放污染物种类的(毒性、挥发性降低的除外); (2)位于环境质量不达标区的建设项目相应污染物排放量增加的; (3)废水第一类污染物排放量增加的; (4)其他污染物排放量增加 10%及以上的。	项目增加 1 个斜板浓密 机,药剂添加计量泵减少 3 台,不增加污染物种类 及排放量。	否			
	7.物料运输、装卸、贮存方式变化,导致大气污 染物无组织排放量增加 10%以上的。	无变化	否			
	8.废气、废水污染防治措施变化,导致第6条中 所列情形之一(废气无组织排放改为有组织排放、 污染防治措施强化或改进的除外)或大气污染物 无组织排放量增加10%及以上的。	无变化	否			
环保	9.新增废水直接排放口;废水由间接排放改为直接排放;废水直接排放口位置变化,导致不利环境影响加重的。	无变化	否			
措施	10.新增废气主要排放口(废气无组织排放改为有组织排放的除外);主要排放口排气筒高度降低10%及以上的。	无变化	否			
	11.噪声、土壤或地下水污染防治措施变化,导致 不利环境影响加重的。	无变化	否			
	12.固体废物利用处置方式由委托外单位利用改 为自行利用的(自行利用处置设施单独开展环境	无变化	否			

影响评价的除外);固体废物自行处置方式变化, 导致不利环境影响加重的。		
13.事故废水暂存能力或拦截设施变化,导致环境 风险防范能力弱化或降低的。	无变化	否

依据《污染影响类建设项目重大变动清单(试行)》的通知(环办环评函 [2020]688 号),上述变动不属于重大变动。

3.8 验收范围

本次验收范围为项目环境影响报告书及批复要求的实际建设内容。

4 环境保护措施落实情况

4.1 污染治理设施落实情况

4.1.1 废水治理措施

项目产生的废水包括浮选泡沫冲洗水、生活污水、食堂废水。

项目浮选泡沫冲洗水经现有的尾矿干排系统(浓密池+压滤+回水池)处理 后循环利用,不外排;食堂废水经油水分离器处理后与其它生活污水一并进入化 粪池预处理,处理后经市政污水管网排入曹妃甸城区污水处理厂。

废水排放情况见表 4.1-1。

类别	污染源	污染物名称	环保措施	排放去向
浮选泡沫冲洗水	浮选生产线	SS、Fe	现有的尾矿干排系统(浓密池+压 滤+回水池)处理后循环利用,不 外排	不外排
生活污水		COD、氨氮、SS、 BOD₅	经现有化粪池预处理排入曹妃甸 城区污水处理厂	不外排
食堂废水	食堂	COD、氨氮、SS、 BOD ₅ 、动植物油 类	经现有油水分离器预处理排入化 粪池,排入曹妃甸城区污水处理厂	不外排

表 4.1-1 废水排放情况一览表

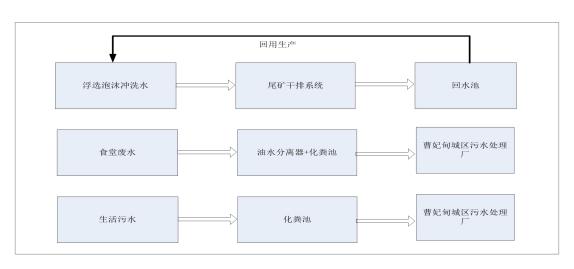
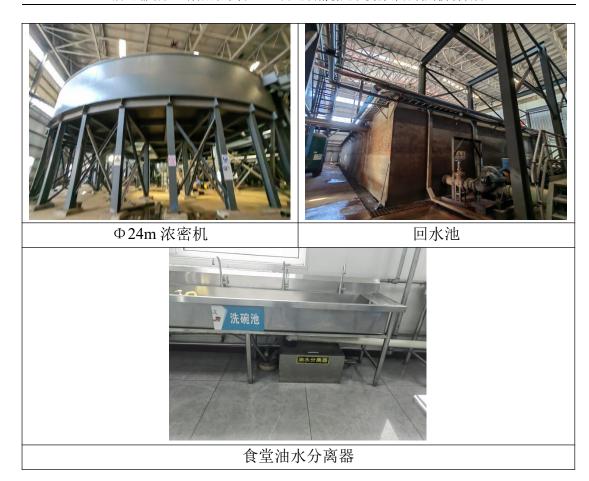



图 4.1-1 废水治理工艺流程示意图

4.1.2 废气治理措施

项目废气污染源主要为铁精粉堆存及装卸废气、细粒尾砂堆存及装卸废气、药剂投加废气、道路运输扬尘、食堂油烟。

项目建有封闭浮选车间,投料过程喷雾抑尘;项目建有封闭的精矿库房及尾矿库房,库房内分别设有喷雾抑尘设施;厂区运输道路硬化,运输车辆进行苫盖,设有洒水车定时对运输道路洒水抑尘;厂区出口及精矿库房出口设有洗车平台等。项目利旧现有食堂,食堂油烟经现有的油烟净化器净化后排放。

废气排放情况见表 4.1-2。

名称 来源 污染物 环保措施 排放方式 排放去向 有组织 食堂 油烟 油烟净化器 有组织 外环境 废气 铁精粉堆存及装卸废气、 车间及库房封闭,设置喷 无组织 细粒尾砂堆存及装卸废 雾抑尘设施, 厂区出口及 颗粒物 外环境 无组织 废气 气、药剂投加废气、道路 精矿库房设置洗车平台, 运输扬尘 道路硬化等

表 4.1-2 废气排放情况一览表

17

精矿库房出口洗车设施(2#)

精矿库房出口洗车设施(1#)

精矿库房出口洗车设施(3#)

厂区出口洗车设施

内部车辆洗车设施

颗粒物在线监测仪

运输车辆苫盖

洒水车

食堂油烟净化器

4.1.3 噪声防治措施

项目主要噪声源为强磁扫选机、浮选机、鼓风机、泵等。 项目采用低噪声设备、基础减振、厂房隔声、鼓风机安装消声器等措施。 噪声排放情况见表 4.1-3。

表 4.1-3 主要噪声排放情况一览表

车间	噪声源	治理措施		
明·珠·拉·朱·拉	强磁扫选机	**************************************		
强磁扫选车间	渣浆泵	基础减振+厂房隔声		
	浮选机			
河州大口	精矿输送泵	基础减振+厂房隔声		
浮选车间	尾矿输送泵			
	鼓风机	基础减振+厂房隔声,鼓风机安装消声器		

鼓风机消声器

4.1.4 固体废物治理措施

固体废物为细粒尾砂、废包装袋、废润滑油、废油桶和生活垃圾。

细粒尾砂暂存于库房内,将用于园区填方造地,后期或作为建筑材料外卖; 废包装袋外售废品回收站;厂区现有1座危废暂存间,废润滑油、废油桶产生后 暂存于现有危废间内,定期交有资质单位处置;生活垃圾由环卫部门收集处理。

固体废物产生情况见表 4.1-4。

表 4.1-4 固体废物产生处置情况一览表

序号	名称	类型	处置措施	
1	细粒尾砂		库房暂存,用于园区填方造地;或作为建筑材料 外卖	
2	废包装袋		清洗后外售废品回收站	
3	废润滑油	危险废物	厂区现有1座危废暂存间,产生后暂存危废间内,	
4	废油桶	1	定期交有资质的单位处置	
5	生活垃圾	生活垃圾	集中收集,定期交环卫处理	

分区标识

4.1.5 其他措施

- 1、防渗措施:项目利用现有车间、库房改造成强磁扫选车间和浮选车间,强磁扫选车间、浮选车间地面采取抗渗混凝土防渗,厚度 $25 \, \mathrm{cm}$,抗渗系数 $K \leq 1.0 \times 10^{-7} \, \mathrm{cm/s}$ 。
- 2、环境风险防范设施:厂区设有灭火器、消防沙、消防锹等应急物资,企业已修编突发环境事件应急预案并备案,备案编号:130209-2024-141-L。

4.2 环境保护设施"三同时"落实情况

项目总投资1272.7万元,其中环保投资约63.635万元,占工程总投资的5%。项目环保"三同时"落实情况见表 4.2 -1。

表 4.2-1 项目环境保护"三同时"措施落实情况一览表

项目	污染源	污染因子	环评要求治理措施	项目实际落实情况	符合性
	铁精粉堆存及装卸		封闭现有精矿库房+喷雾抑尘 封闭精矿库房+喷雾抑尘		符合
	细粒尾砂堆存及装卸		封闭现有尾矿库房+喷雾抑尘 封闭尾矿库房+喷雾抑尘		符合
	药剂投加	颗粒物	封闭浮选车间+喷雾抑尘 封闭浮选车间+喷雾抑尘		符合
废气	道路运输		运输车辆车斗采用苫布苫盖,地面硬化,洒水降尘等;设置洗车台	运输车辆车斗采用苫布苫盖,地面硬化,洒水降尘等; 设有洗车台	
	食堂	饮食油烟	经现有的油烟净化器净化通过排气筒至食堂 的楼顶排放	经现有的油烟净化器净化后排放	符合
	浮选泡沫冲洗水	SS、Fe	经现有的尾矿压滤后经现有回水池沉淀后循 环利用,不外排	经现有的尾矿压滤后经现有回水池沉淀后循环利用,不 外排	符合
废水	生活污水	COD、氨氮、 SS、BOD₅	经现有化粪池预处理排入曹妃甸城区污水处 理厂	经现有化粪池预处理排入曹妃甸城区污水处理厂	符合
	食堂废水	COD、氨氮、 SS、BOD ₅ 、 动植物油类	经现有油水分离器预处理排入曹妃甸城区污 水处理厂	经现有油水分离器预处理排入曹妃甸城区污水处理厂	符合
	尾矿干排	细粒尾砂	作为建筑材料外卖或填埋、土地复垦	库房暂存,用于园区填方造地;或作为建筑材料外卖	符合
	药剂包装	废包装袋	清洗后外售废品回收站	清洗后外售废品回收站	符合
置体 废物	设备	废润滑油 废油桶	危废间暂存(现有 12m²),定期交有资质单位 处理	厂区现有 1 座危废暂存间,废润滑油、废油桶产生后暂 存于现有危废间内,定期交有资质单位处置	符合
	生活	生活垃圾	交环卫部门处理	交环卫部门处理	符合
噪声	强磁扫选机、浮选机、鼓风机、泵	等效连续 A	基础减振、厂房隔声、鼓风机安装消声器	基础减振、厂房隔声、鼓风机安装消声器	符合

	等	声级			
其他	环境管理	按要求	设置专职环保人员,制定环境管理制度	企业设有专职环保人员,制定有环境管理制度	符合
			①强磁扫选车间、浮选车间为一般防渗区,采用抗渗混		
防渗				凝土防渗,厚度 25cm,抗渗系数 K≤1.0×10 ⁻⁷ cm/s。	符合
	③其他地区进行非硬即绿			③其他地区进行非硬即绿	
				现有工程厂界已安装颗粒物在线监测仪 8 个, 监测 TSP、	
依托	现有工程厂界已安装颗粒物在线监测仪8个,监测TSP、PM ₁₀ 、PM _{2.5} 。		PM ₁₀ 、 PM _{2.5} 。		
工程	厂区出口现有洗车设施1套、精矿库房出口现有洗车设施3套,现有内部车辆洗车设施1套。		厂区出口现有洗车设施1套、精矿库房出口现有洗车设		
				施3套,现有内部车辆洗车设施1套。	

4.3 环评批复落实情况

环评批复落实情况见表 4.3-1。

表 4.3-1 环评批复落实情况一览表

r > □		大田 00 004		
序号	环评批复要求	落实情况		
1	合理安排施工时间,优化施工工艺,防止工程施工造成的环境污染。选用低噪声施工机械、合理安排各类施工机械工作时间,确保施工场界噪声达到《建筑施工场界环境噪声排放标准》 (GB12523-2011)要求。	项目施工期合理安排施工时间,严格控制施工 范围,选用低噪声施工机械、合理安排各类施 工机械工作时间等措施		
2	严格落实各项大气污染物防治措施。食堂安装油烟净化器,油烟排放须满足《餐饮业大气污染物排放标准》(DB13/5808-2023)表 1 小型规模限值要求。加强生产各环节污染物无组织排放管理,车间及库房封闭,库房及加药工序设置喷雾抑尘装置,厂区出口及精矿库房设置洗车平台,运输车辆尾气排放须满足相关环保要求,颗粒物无组织排放须满足《铁矿采选工业污染物排放标准》(GB28661-2012)表7中限值要求。	项目利旧现有食堂,食堂油烟经现有的油烟净化器净化后排放,经检测,油烟排放浓度满足《餐饮业大气污染物排放标准》(DB13/5808-2023)表1小型规模限值要求。项目建有封闭浮选车间,投料过程喷雾抑尘;项目建有封闭的精矿库房及尾矿库房,库房内分别设有喷雾抑尘设施;厂区运输道路硬化,运输车辆进行苫盖,设有洒水车定时对运输道路洒水抑尘;厂区出口及精矿库房出口设有洗车平台等。经检测,厂界废气达标。		
3	严格落实各项水污染防治措施。以"雨污分流、一水多用、达标排放"为原则,切实做好废水处理后回用工作,减少新鲜水用量和废水产生量。项目浮选泡沫冲洗水经尾矿压滤、回水池沉淀后循环利用,不外排。食堂废水经隔油处理后与其它生活污水经市政污水管网排入曹妃甸城区污水处理厂,外排废水水质须满足《污水综合排放标准》(GB8978-1996)表4中三级标准及污水处理厂进水水质要求。严格按要求落实区防渗措施,防止对地下水造成污染。	项目浮选泡沫冲洗水经现有的尾矿干排系统(浓密池+压滤+回水池)处理后循环利用,不外排;食堂废水经油水分离器处理后与其它生活污水一并进入化粪池预处理,处理后经市政污水管网排入曹妃甸城区污水处理厂,经检测,外排水满足《污水综合排放标准》(GB8978-1996)表4中三级标准及污水处理厂进水水质要求。强磁扫选车间、浮选车间地面采取抗渗混凝土防渗,厚度25cm,抗渗系数K≤1.0×10-7cm/s。		
4	严格落实声环境保护措施。优化高噪声设备布局, 优先选用低噪声设备,采取隔声、减振等降噪措施,厂界噪声须符合《工业企业厂界环境噪声排放标准》(GB12348-2008)中相关要求。	项目采用低噪声设备,基础减振、厂房隔声、 鼓风机安装消声器等措施。经检测,厂界噪声 达标。		
5	严格落实固体废物污染防治措施。严格按照有关规定,对固体废物实施分类收集和处理、处置,做到资源化、减量化、无害化。一般工业固废妥善处理,最大限度回收利用。废润滑油、废油桶等危险废物按规定暂存,定期交有相应资质的危险废物处理单位处理。危险废物暂存间应满足《危险废物贮存污染控制标准》(GB18597-2023)要求。加强危险废物收集、出厂转移环节的环境管理和风险防范。	细粒尾砂暂存于库房内,用于园区填方造地;或作为建筑材料外卖;废包装袋外售废品回收站;厂区现有1座危废暂存间,废润滑油、废油桶产生后暂存于现有危废间内,定期交有资质单位处置;生活垃圾交环卫部门收集处理。危险废物暂存间应满足《危险废物贮存污染控制标准》(GB18597-2023)要求。		
6	加强环境风险防范,落实环境风险应急措施。制定和完善突发环境事件应急预案,与政府、园区等应急预案做好衔接,按照规定报相关部门备案。配备必要的应急设备和物资,加大风险监测和监控力度,定期进行应急培训和演练,有效防范和应对环境风险。	厂区设有灭火器、消防沙、消防锹等应急物资, 企业已修编突发环境事件应急预案并备案,备 案编号: 130209-2024-141-L。		

5环评主要结论及批复意见

5.1 环评主要结论

5.1.1 项目概况

- (1)项目名称: 年产 200 万吨铁精粉尾矿资源综合利用技改项目。
- (2)建设单位: 唐山埔铭矿业有限公司。
- (3)建设地点及周边关系:项目位于唐山市曹妃甸装备制造园区,中心地理 坐标为东经 118°24′14.49″,北纬 39°10′0.30″。项目东侧为唐山瑞翔源新材料有限 公司,南侧、西侧为空地,北侧为庙中路,隔路为唐山亿昌热能科技有限公司。
 - (4)建设性质: 技改。
- (5)建设内容:项目占用公司既有用地,不涉及新增占地,利用现有车间、 库房改造成强磁扫选车间和浮选车间,对现有尾矿中的细粒级尾矿进行二次筛分。 主要购置强磁扫选机、强磁扫选精矿输送泵、强磁扫选尾矿输送泵、浮选机、离 心(罗茨)鼓风机、药剂添加计量泵、电热水锅炉、精矿浓密机、精矿压滤机等设 备及相关配套辅助设施等。项目技改后,达到年处理细粒级尾矿 26.325 万吨的 规模。
 - (6)生产规模及产品方案: 年处理细粒级尾矿 26.325 万吨。
- (7)总投资及环保投资:项目总投资 1272.7 万元,其中环保投资约 63.635 元,占工程总投资的 5%。
- (8)劳动定员及工作制度:工作制度实行三班制,每班每天工作8小时,年工作300天。技改项目新增劳动定员26人。

5.1.2 评价结论

- 5.1.2.1 评价区环境质量现状
- (1)环境空气

通过搜集曹妃甸区 2022 年常规监测数据,本项目所在区域为不达标区;评价区域内环境空气中 TSP 24 小时平均监测值满足《环境空气质量标准》

(GB3095-2012)及其修改单中二级标准要求;非甲烷总烃满足河北省地方标准《环境空气质量标准 非甲烷总烃限值》(DB13/1577-2012)二级标准。

(2)地下水

根据监测结果,项目各地下水监测点位中,各项监测因子均满足《地下水质量标准》(GB/T14848-2017)III类标准要求,石油类满足《地表水环境质量标准》(GB3838-2002)标准要求,评价区地下水环境良好。

(3)声环境

根据监测结果,项目厂界声环境现状值满足《声环境质量标准》 (GB3096-2008)3类、4a类标准要求。

(4)土壤环境

根据监测结果,建设用地满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)筛选值标准及河北省地方标准《建设用地土壤污染风险筛选值》(DB13/T5216-2020)表 1 筛选值标准,区域土壤环境质量现状良好。

- 5.1.2.2 环境保护措施
- (1)环境空气
- ①颗粒物

项目利用现有的封闭尾砂库房、精粉库房,并采取喷雾抑尘措施。

碳酸钠为粉状,全部采用袋装,由人工上料至药剂制备槽,投料过程中将产生一定量的粉尘。项目采取投料过程先加入水,后加入药剂进行配制,采取密闭车间、喷雾抑尘等措施。

运输车辆车斗采用苫布苫盖,地面硬化,洒水降尘等;利用厂区出口现有洗车设施1套、精矿库房出口现有洗车设施3套,现有内部车辆洗车设施1套。

经过预测,厂界达标排放厂界无组织颗粒物排放浓度满足《铁矿采选工业污染物排放标准》(GB28661-2012)表 7 大气污染物无组织排放浓度限值: 1.0mg/m³。

②食堂油烟

利用现有的食堂,食堂油烟经油烟净化器对油烟进行净化,净化后的油烟通过排气筒至食堂的楼顶排放。经计算,食堂油烟满足《餐饮业大气污染物排放标准》(DB13/5808-2023)限值要求。

(2)水环境

浮选泡沫冲洗水经尾矿压滤后经回水池沉淀后循环利用,不外排;生活污水 经化粪池预处理,食堂废水经油水分离器预处理后,排入曹妃甸城区污水处理厂, 对地表水环境无影响。

(3)声环境

噪声源为强磁扫选机、浮选机、鼓风机、泵等,采取基础减振、厂房隔声、鼓风机安装消声器等措施,根据预测结果,项目厂界昼间噪声贡献值满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类、4类标准要求。

(4)固废

细粒尾砂作为建筑材料外卖或填埋、土地复垦; 废包装袋清洗后外售废品回收站; 废润滑油、废油桶, 在现有危废间暂存, 定期交有资质单位处理; 生活垃圾经收集后由环卫部门定期清运。项目固体废物全部得到合理处置, 不会对外环境造成明显影响。

5.1.2.3 总量指标

根据项目工程分析及污染源强核算,项目污染物实际排放量见下表。

污染物	颗粒物	二氧化硫	氮氧化物	COD	氨氮
排放量(t/a)	0.151	0	0	0.131	0.013

表 5.1-1 污染物实际排放量

5.1.2.4 公众参与

在报告编制期间,建设单位按照《环境影响评价公众参与办法》(生态环境部令第4号),建设单位于2023年12月7日在河北生态信息网以网上公示的形式进行了第一次公示,在环评报告征求意见稿完成后,建设单位于2024年1月18日~1月31日在河北生态信息网(评价范围内无敏感点)进行了征求意见稿公示,在此期间,分别于2024年1月19日、2024年1月22日,在河北青年报对本项目环评信息进行了两次报纸公示,以征求当地公众对于本项目的意见。公示期间未收到公众反馈意见。

5.1.2.5 综合结论

唐山埔铭矿业有限公司年产 200 万吨铁精粉尾矿资源综合利用技改项目符合国家相关产业政策,符合总体规划和环境保护规划;对污染物采取了合理、有效的治理措施;对周围环境的影响程度在可接受的范围内,不会改变周围地区当

前的大气、水、声环境质量的现有功能;项目具有良好的经济效益,可以推动当地经济的发展。因此,在落实报告书中提出的各项环保治理措施后,从环境保护的角度,项目是可行的。

5.2 审批部门审批决定

所报《唐山埔铭矿业有限公司年产 200 万吨铁精粉尾矿资源综合利用技改项目环境影响报告书报批申请表》及相关材料收悉。经研究,批复如下。

一、该项目位于唐山市曹妃甸装备制造园区唐山埔铭矿业有限公司现有厂区内,中心地理坐标为东经 118°24′14.49″,北纬 39°10′0.3″,总投资 1272.7 万元(其中环保投资 63.635 万元)。项目对现有车间、库房进行改造,建设强磁扫选车间和浮选车间,对现有尾矿中的细粒级尾矿进行二次选别。主要购置强磁扫选机、强磁扫选精矿输送泵、强磁扫选尾矿输送泵、浮选机、离心(罗茨)鼓风机、药剂添加计量泵、电热水锅炉、精矿浓密机、精矿压滤机等设备及相关配套辅助设施。项目技改完成后,计划年处理细粒级尾矿 26.325 万吨。

唐山市曹妃甸区行政审批局以唐曹审批投资备(2024)318 号文件为该项目备案。该项目符合《曹妃甸中小企业园区总体规划》及其审查意见、《曹妃甸中小企业园区总体规划(2017-2030)环境影响补充报告》及其审查意见的相关要求。项目实施将对生态环境产生一定不利影响,在全面落实环境影响报告书提出的各项生态保护及污染防治措施后,不利影响能够得到减缓和控制。我局原则同意环境影响报告书的环境影响评价总体结论和拟采取的环境保护措施。

- 二、项目建设和运行管理中应重点做好以下工作:
- (一)在设计、建设和运行中,按照"环保优先、绿色发展"的目标定位和循环 经济、清洁生产的理念,采用国内外成熟可靠、技术先进、环境友好的工艺技术 方案,选用优质装备,强化各装置节能降耗措施,减少污染物的产生量和排放量。
- (二)加强施工期环境管理。合理安排施工时间,优化施工工艺,防止工程施工造成的环境污染。选用低噪声施工机械、合理安排各类施工机械工作时间,确保施工场界噪声达到《建筑施工场界环境噪声排放标准》(GB12523-2011)要求。
- (三)严格落实各项大气污染物防治措施。食堂安装油烟净化器,油烟排放须满足《餐饮业大气污染物排放标准》(DB13/5808-2023)表 1 小型规模限值要求。

加强生产各环节污染物无组织排放管理,车间及库房封闭,库房及加药工序设置喷雾抑尘装置,厂区出口及精矿库房设置洗车平台,运输车辆尾气排放须满足相关环保要求,颗粒物无组织排放须满足《铁矿采选工业污染物排放标准》(GB28661-2012)表7中限值要求。

(四)严格落实各项水污染防治措施。以"雨污分流、一水多用、达标排放"为原则,切实做好废水处理后回用工作,减少新鲜水用量和废水产生量。项目浮选泡沫冲洗水经尾矿压滤、回水池沉淀后循环利用,不外排。食堂废水经隔油处理后与其它生活污水经市政污水管网排入曹妃甸城区污水处理厂,外排废水水质须满足《污水综合排放标准》(GB8978-1996)表4中三级标准及污水处理厂进水水质要求。严格按要求落实区防渗措施,防止对地下水造成污染。

(五)严格落实声环境保护措施。优化高噪声设备布局,优先选用低噪声设备, 采取隔声、减振等降噪措施,厂界噪声须符合《工业企业厂界环境噪声排放标准》 (GB12348-2008)中相关要求。

(六)严格落实固体废物污染防治措施。严格按照有关规定,对固体废物实施分类收集和处理、处置,做到资源化、减量化、无害化。一般工业固废妥善处理,最大限度回收利用。废润滑油、废油桶等危险废物按规定暂存,定期交有相应资质的危险废物处理单位处理。危险废物暂存间应满足《危险废物贮存污染控制标准》(GB18597-2023)要求。加强危险废物收集、出厂转移环节的环境管理和风险防范。

(七)加强环境风险防范,落实环境风险应急措施。制定和完善突发环境事件 应急预案,与政府、园区等应急预案做好衔接,按照规定报相关部门备案。配备 必要的应急设备和物资,加大风险监测和监控力度,定期进行应急培训和演练, 有效防范和应对环境风险。

(八)提高管理和运营水平,加大管理、技术人员培训力度,加强非正常工况下的生态环境保护工作。从生态环境保护角度制定完善检修和维修操作规范,进一步降低非正常工况发生频次和污染物排放量。

(九)建立与项目生态环境保护工作需求相适应的环境管理制度,完善企业各项生态环境管理措施,加强生态环境管理。在项目施工和运营过程中,主动发布

企业环境保护信息,并自觉接受社会监督。建立畅通的公众参与渠道,加强宣传与沟通工作,及时解决公众反映的环境问题,满足公众合理的生态环境保护要求。

(十)严格落实运营期的污染源和监测计划。建立包括废气等各类污染源的监测管理体系,按照《排污单位自行监测技术指南 总则》(HJ819-2017)、《排污许可证申请与核发技术规范总则》(HJ942-2018)及其他有关标准、规定要求,根据厂区平面布置、地下水流向,合理设置监测点,制定环境监测计划并严格落实,建立污染源监测台账制度,对地下水开展长期环境监测,保存原始监测记录,定期向公众公布污染物排放监测结果。一旦出现污染,立即启动应急预案和应急措施,减少对生态环境的不利影响。

(十一)项目建设必须严格执行配套的环境保护设施与主体同时设计、同时施工、同时投产使用的"三同时"制度。施工招标文件和施工合同应明确环保条款和责任,认真落实施工期生态环境保护工作。按规定程序自行开展竣工环境保护验收,环境影响报告书经批准后,该项目的性质、规模、地点、生产工艺和环境保护措施发生重大变动,且可能导致环境影响显著变化(特别是不利环境影响加重)的,应当重新报批该项目环境影响报告书。自环境影响报告书应当报我局重新审核。起,如超过5年方决定工程开工建设的,环境影响报告书应当报我局重新审核。

(十二)启动生产设施或实际排污之前,你公司应按照经批准的环境影响评价文件认真梳理并确认各项环境保护措施落实后,依法办理排污许可相关手续。

三、你单位在接到本批复后 20 个工作日内,需将批复后的环境影响报告书送唐山市生态环境局曹妃甸区分局,并按规定接受各级环境保护主管部门的监督检查。同时需按《建设项目环境保护"三同时"执行情况》要求,定期向唐山市生态环境局曹妃甸区分局报告项目环境保护"三同时"完成情况。

四、该项目的环境保护"三同时"制度落实日常监管由唐山市生态环境局曹妃甸区分局负责。

6 验收执行标准

6.1 污染物排放标准

1、废气: 厂界颗粒物无组织排放执行《铁矿采选工业污染物排放标准》(GB28661-2012)表7大气污染物无组织排放浓度限值。无组织有机废气(以非甲烷总烃计)执行河北省地方标准《工业企业挥发性有机物排放控制标准》(DB13/2322-2016)中表2、表3限值要求和《挥发性有机物无组织排放控制标准》(GB37822-2019)附录A表A.1厂区内VOCs无组织排放限值。

食堂油烟执行《餐饮业大气污染物排放标准》(DB13/5808-2023)小型规模。

类别	工序/时段	污染物名称	排放标	准值	单位	标准来源
		颗粒物	1.0)	mg/m³	《铁矿采选工业污染物排放标准》 (GB28661-2012)
			厂界	2.0	mg/m³	《工业企业挥发性有机物排放控制标
			车间门口	4.0	mg/m³	准》(DB13/2322-2016)
废气	无组织排放 	放 非甲烷总烃	监控点 1h 平均浓度	6.0	mg/m³	// 42 42 kL +2 +1 klm T //1 //1 +1+ >h +> h +1 ± ¬ \phi \
			监控点任 意一次浓 度值	20	mg/m³	《挥发性有机物无组织排放控制标准》 (GB37822-2019)
	有组织排放	食堂油烟	1.5	5	mg/m³	《餐饮业大气污染物排放标准》 (DB13/5808-2023)

表 6.1-1 废气污染物排放标准

2、噪声: 东、南、西厂界噪声执行《工业企业厂界环境噪声排放标准》 (GB12348-2008)3 类标准; 北厂界噪声执行《工业企业厂界环境噪声排放标准》 (GB12348-2008)4 类标准。

具体标准见表 6.1-2。

类别 污染物名称 标准限值 单位 标准来源 东、南、西厂 昼间 65 dB(A) 3 类 《工业企业厂界环 界 夜间 55 等效 A 声级 噪声 境噪声排放标准》 昼间 70 (GB12348-2008) 北厂界 dB(A) 4 类 夜间 55

表 6.1-2 运营期噪声排放标准

3、废水:废水排放执行《污水综合排放标准》(GB8978-1996)表 4 中第二类污染物最高允许排放浓度的三级标准同时满足曹妃甸城区污水处理厂进水水质要求。

具体标准见表 6.1-3。

《污水综合排放标准》 曹妃甸城区污水处 序号 主要污染物 单位 执行限值 (GB8978-1996) 表 4 中三级标准 理厂进水水质 1 6~9 6~9 pH 值 无量纲 COD 2 mg/L 500 350 350 3 BOD₅ mg/L 300 300 300 4 400 SS mg/L 250 250 氨氮 5 mg/L / 35 35 6 动植物油 mg/L 100 100

表 6.1-3 运营期废水排放标准

4、一般固体废物执行《中华人民共和国固体废物污染环境防治法》中第二十条第一款:产生、收集、贮存、运输、利用、处置固体废物的单位和其他生产经营者,应当采取防扬散、防流失、防渗漏或者其他防止污染环境的措施,不得擅自倾倒、堆放、丢弃、遗撒固体废物。

危险废物执行《危险废物贮存污染控制标准》(GB18597-2023)。

6.2 环境质量标准

地下水执行《地下水质量标准》(GB/T14848-2017)中III类标准,其中石油类参照执行《地表水质量标准》(GB3838-2002)中III类标准。

标准值见表 6.2-1。

项目 污染物 单位 标准来源 标准值 钠 ≤200 mg/LрΗ $6.5 \sim 8.5$ 无量纲 氨氮 ≤0.50 mg/L 硝酸盐 (以N计) ≤ 20.0 mg/L 亚硝酸盐 (以N计) ≤1.00 mg/L 《地下水质量标准》 ≤0.002 挥发性酚类 (以苯酚计) mg/L 地下水 (GB/T14848-2017) 氰化物 ≤0.05 mg/L 中III类标准 ≤0.01 mg/L 汞 ≤0.001 mg/L 铬(六价) ≤0.05 mg/L 总硬度(以CaCO3计) ≤450 mg/L 铅 ≤0.01 mg/L

表 6.2-1 地下水质量标准

氟化物	≤1.0	mg/L	
镉	≤0.005	mg/L	
 铁	≤0.3	mg/L	
铜	≤1	mg/L	
	≤1	mg/L	
	≤0.10	mg/L	
溶解性总固体	≤1000	mg/L	
耗氧量 (COD _{Mn} 法,以O ₂ 计)	≤3.0	mg/L	
硫酸盐	≤250	mg/L	
氯化物	≤250	mg/L	
硫化物	≤0.02	mg/L	
银	≤0.05	mg/L	
铝	≤0.2	mg/L	
铍	≤0.002	mg/L	
硒	≤0.01	mg/L	
总大肠菌群	≤3.0	MPN/100mL	
菌落总数	≤100	CFU/mL	
石油类	≤0.05	mg/L	《地表水环境质量标准》 (GB3838-2002) III类标准

7 验收监测内容

7.1 环境保护设施调试效果

7.1.1 有组织废气

项目有组织废气检测情况见表 7.1-1。

表 7.1-1 有组织废气检测情况一览表

有组织排放源	检测点位	检测因子	检测频次	备注
食堂废气	油烟净化器排气筒	油烟	5 次/天, 检测 2 天	进口不具备检测条件

7.1.2 无组织废气

项目无组织废气检测情况见表 7.1-2。

表 7.1-2 无组织检测情况一览表

无组织排放源	检测点位	检测因子	检测频次	
生产工序	厂界上风向1个采样点,下风向3 个采样点	颗粒物、非甲烷总烃	4次/天,检测2天	
	浮选车间门口	非甲烷总烃	4次/天,检测2天	

7.1.3 厂界噪声

项目厂界噪声检测情况见表 7.1-3。

表 7.1-3 噪声检测情况一览表

类别	污染源	检测点位	检测因子	检测频次	检测周期
噪声	生产设备	厂界	等效连续 A 声级(Leq)	检测2天, 昼间夜间各1次	/

7.1.4 废水

项目废水检测情况见表 7.1-4。

表 7.1-4 废水监测情况一览表

排放源	检测点位	检测因子	检测频次	检测周期
生活污水	厂区废水排口	PH、COD、BOD₅、氨 氮、SS、动植物油	检测2天,每天4次	/

7.2 环境质量监测

地下水检测情况见表 7.2-1。

表 7.2-1 地下水检测情况一览表

类别	检测点位	检测因子	检测频次	检测周期
地下水	厂区南侧监测井	pH、耗氧量、氨氮、铁、锰、汞、 砷、氟化物、石油类	检测2天,2次/天	/

8 质量保证和质量控制

8.1 监测项目及分析方法等情况

表 8.1-1 检测分析方法及仪器等情况一览表

		表 6.1-1	节间处 处 处	
序号	项目名称	检测标准(方法)名称及编号(含年号)	仪器名称及型号	
		无组织废气		
1	非甲烷总烃	《环境空气总烃、甲烷和非甲烷总烃的测定直接进样-气相色谱法》 HJ604-2017	HN-6000X真空气体采样箱 (TRKYQ-068-10~12) HN-1000真空箱气袋采样器 (TRKYQ-068-14、15) FB-8风速仪(TRKYQ-069-2) DYM3空盒气压表(TRKYQ-007-8) GC-6890A气相色谱仪 (TRKYQ-057-1)	
2	总悬浮颗粒 物	《环境空气 总悬浮颗粒物的测定 重量法》HJ 1263-2022	ZR-3923环境空气颗粒物综合采样器 (TRKYQ-075-9~12) FB-8风速仪(TRKYQ-069-2) DYM3空盒气压表(TRKYQ-007-8) SQP电子天平(TRKYQ-098) YKX-3WS恒温恒湿间 (TRKYQ-083-1)	
		有组织废气		
			ZR-3260自动烟尘烟气综合测试仪	
1	油烟	《固定污染源废气 油烟和油雾的测定红外 分光 光度法》HJ1077-2019	(TRKYQ-120-2) JLBG-121U红外分光测油仪 (TRKYQ-041)	
	1		(110(10-041)	
1	рН	《水质pH值的测定电极法》HJ1147-2020	PHBJ-260F便携式pH计 (TRKYQ-082-1)	
2	悬浮物	《水质悬浮物的测定重量法》GB/T11901-1989	101-3B电热鼓风干燥箱 (TRKYQ-060-2) FA2204B电子天平(TRKYQ-016-2)	
3	五日生化需 氧量	《水质 五日生化需氧量(BODs)的测定 稀释 与接种法》HJ 505-2009	BJPX-I-400生化培养箱 (TRKYQ-170) JPB-607A溶解氧测定仪 (TRKYQ-045-2)	
4	氨氮	《水质 氨氮的测定 纳氏试剂分光光度法》 HJ535-2009	T6新世纪紫外可见分光光度计 (TRKYQ-055-2)	
5	化学需氧量	《水质 化学需氧量的测定 重铬酸盐法》 HJ828-2017	/	
6	动植物油类	《水质石油类和动植物油类的测定红外分 光光 度法》HJ637-2018	JLBG-121U红外分光测油仪 (TRKYQ-041)	
		地下水		
1	рН	《水质pH值的测定电极法》HJ1147-2020	PHBJ-260F便携式pH计 (TRKYQ-082-1、2)	
2	高锰酸盐指 数	《水质高锰酸盐指数的测定》GB/T11892-1989	/	
3	氨氮	《水质氨氮的测定纳氏试剂分光光度法》 HJ535-2009	T6新世纪紫外可见分光光度计 (TRKYQ-055-2)	
4	铁	《水质铁、锰的测定火焰原子吸收分光光 度法》	GGX-830原子吸收分光光度计	
•		GB/T 11911-1989	(TRKYQ-044)	

5	锰	《水质铁、锰的测定火焰原子吸收分光光 度法》	GGX-830原子吸收分光光度计		
	ИШ	GB/T 11911-1989	(TRKYQ-044)		
	 	《水质汞、砷、硒、铋和锑的测定原子荧光 法》	PF32.原子荧光光度计		
6	水	НЈ694-2014	(TRKYO-038-2)		
7	神	《水质 汞、砷、硒、铋和锑的测定原子荧光 法》	AFS-8520原子荧光光度计		
/	1 ¹ 1 ¹ 1	НЈ694-2014	(TRKYQ-038)		
8	気化物	《水质 氟化物的测定离子选择电极法》 GB/T	PXSJ-216F离子计(TRKYQ-054)		
8	氟化物	7484-1987	FASJ-2101 因 1 [[TKK1Q-034]		
9	石油类	《水质 石油类的测定紫外分光光度法(试 行)》HJ	T6新世纪紫外可见分光光度计		
9	11個矢	970-2018	(TRKYQ-055-2)		
		噪声			
			FB-8风速仪(TRKYQ-069-2)		
	 工业企业厂	《工业企业厂界环境噪声排放标准》 GB	AWA6228+多功能声级计		
1	界环境噪声		(TRKYQ-052)		
	1分小児咪尸	12348-2008	AWA6021A声校准器		
			(TRKYQ-005-5)		

8.2 质量保证和质量控制

检测人员均已持证上岗,严格按照环境监测技术规范和有关环境检测质量保证的要求进行样品采集、保存、分析等,全程进行质量控制。

9 验收监测结果

9.1 生产工况

验收检测期间,项目主体工程调试工况稳定,环境保护设施运行正常。

9.2 环境保护设施调试效果

9.2.1 污染物达标排放监测结果

9.2.1.1 有组织废气排放监测结果及分析评价

有组织废气检测结果见表 9.2-1。

表 9.2-1 有组织废气排放检测结果表

				.4-1	月紐約	.,,,,,		. , , . ,			
检测点位 及采样时	此	:油井井子	単位			监测结果			平均值	排放限值	是否
间	监测指标		平 瓜	第一次	第二次	第三次	第四次	第五次	1 均阻	HEAKPIK IE.	达标
	排	气温度	°C	16.5	16.5	16.7	16.7	16.3	16.5		
	排	气流速	m/s	5.3	5.3	5.2	5.2	5.3	5.3	,	/
油烟净化	排气含湿量		%	2.37	2.42	2.46	2.49	2.53	2.45	/	/
器排气筒 2024.11.8	排气流量		m³/h	7539	7533	7380	7378	7526	7471		
	油	实测浓度	mg/m³	0.5	0.8	0.5	0.8	0.8	0.7	1.5	达标
	烟	排放速率	kg/h	3.77×10 ⁻³	6.03×10 ⁻³	3.69×10 ⁻³	5.90×10 ⁻³	6.02×10 ⁻³	5.08×10 ⁻³	/	/
	排	气温度	°C	16.5	16.5	16.9	16.4	16.2	16.5		
	排	气流速	m/s	5.3	5.3	5.1	5.0	5.0	5.1	,	/
油烟净化	排气含湿量		%	2.63	2.69	2.64	2.66	2.72	2.67	/	/
器排气筒 2024.11.9	排	气流量	m³/h	7506	7500	7208	7076	7074	7273		
	油	实测浓度	mg/m³	0.9	0.8	0.6	0.5	0.7	0.7	1.5	达标
	烟	排放速率	kg/h	6.76×10 ⁻³	6.00×10·3	4.32×10 ⁻³	3.54×10 ⁻³	4.95×10 ⁻³	5.11×10 ⁻³	/	/

检测结果表明:验收检测期间,食堂油烟净化器油烟最大排放浓度为 0.9mg/m³,检测结果满足《餐饮业大气污染物排放标准》(DB13/5808-2023)小型规模限值要求。

9.2.1.2 无组织排放监测结果及分析评价

无组织检测结果见表 9.2-2。

表 9.2-2 无组织废气检测结果表

	× 7.2-2							
检测点位	単位		监测	结果	Γ	· 最大值	排放	达标
		第一次	第二次	第三次	第四次		PKILL	情况
上风向0#	mg/m³	0.84	0.79	0.80	0.83	0.84		达标
下风向1#	mg/m³	1.33	1.44	1.62	1.29	1.62	2.0	达标
下风向2#	mg/m³	1.40	1.40	1.19	1.35	1.40	2.0	达标
下风向3#	mg/m³	1.30	1.46	1.50	1.40	1.50		达标
浮选车间门口 4#	mg/m³	1.88	1.78	1.73	1.95	1.95	4.0	达标
上风向0#	mg/m³	0.188	0.195	0.198	0.193	0.198		达标
下风向1#	mg/m³	0.407	0.410	0.405	0.398	0.410	1.0	达标
下风向2#	mg/m³	0.438	0.429	0.434	0.426	0.438		达标
下风向3#	mg/m³	0.383	0.417	0.424	0.407	0.424		达标
上风向0#	mg/m³	0.86	0.93	0.86	0.92	0.93		达标
下风向1#	mg/m³	1.34	1.48	1.42	1.24	1.48	2.0	达标
下风向2#	mg/m³	1.46	1.39	1.44	1.28	1.46	2.0	达标
下风向3#	mg/m³	1.46	1.39	1.28	1.27	1.46		达标
浮选车间门口 4#	mg/m³	1.89	1.84	1.88	1.80	1.89	4.0	达标
上风向0#	mg/m³	0.195	0.198	0.193	0.195	0.198		达标
下风向1#	mg/m³	0.407	0.410	0.395	0.409	0.410	1.0	达标
下风向2#	mg/m³	0.447	0.440	0.429	0.428	0.447	1.0	达标
下风向3#	mg/m³	0.421	0.421	0.407	0.424	0.424		达标
	上风向0# 下风向1# 下风向2# 下风向3# 浮选车4# 上风向0# 下风向2# 下风向3# 上风向0# 下风向3# 上风向0# 下风向1# 下风向2# 下风向3# 上风向0# 下风向3# 上风向0# 下风向2# 下风向3# 下风向3# 汗风向2# 下风向3# 上风向0# 下风向1# 下风向2#	上风向0# mg/m³ 下风向1# mg/m³ 下风向2# mg/m³ 下风向3# mg/m³ 浮选车间门口 mg/m³ 上风向0# mg/m³ 下风向1# mg/m³ 下风向2# mg/m³ 中风向3# mg/m³ 下风向1# mg/m³ 不风向1# mg/m³ 不风向1# mg/m³ 中风向0# mg/m³ 下风向1# mg/m³ 下风向1# mg/m³ 下风向2# mg/m³ 下风向2# mg/m³ 下风向3# mg/m³ 下风向1# mg/m³ 下风向0# mg/m³	上风向0# mg/m³ 0.84 下风向1# mg/m³ 1.33 下风向2# mg/m³ 1.40 下风向3# mg/m³ 1.30 浮选车间门口 4# mg/m³ 0.188 上风向0# mg/m³ 0.407 下风向1# mg/m³ 0.438 下风向2# mg/m³ 0.383 上风向0# mg/m³ 0.86 下风向1# mg/m³ 1.34 下风向2# mg/m³ 1.46 浮选车间门口 4# mg/m³ 1.46 浮选车间门口 4# mg/m³ 0.195 下风向1# mg/m³ 0.407 下风向2# mg/m³ 0.447	整心 単位 第一次 第二次 上风向0# mg/m³ 0.84 0.79 下风向1# mg/m³ 1.33 1.44 下风向2# mg/m³ 1.40 1.40 下风向3# mg/m³ 1.30 1.46 浮选车间门口 mg/m³ 0.188 0.195 下风向1# mg/m³ 0.407 0.410 下风向2# mg/m³ 0.383 0.417 上风向0# mg/m³ 0.383 0.417 上风向0# mg/m³ 0.383 0.417 上风向0# mg/m³ 0.386 0.93 下风向1# mg/m³ 1.34 1.48 下风向2# mg/m³ 1.46 1.39 下风向3# mg/m³ 1.46 1.39 下风向3# mg/m³ 1.46 1.39 下风向3# mg/m³ 1.46 1.39 下风向3# mg/m³ 1.89 1.84 上风向0# mg/m³ 0.195 0.198 下风向1# mg/m³ 0.407 0.410 下风向2# mg/m³ 0.407 0.440 下风向2# mg/m³ 0.447 0.440 □	第一次 第二次 第三次 上风向0# mg/m³ 0.84 0.79 0.80 下风向1# mg/m³ 1.33 1.44 1.62 下风向2# mg/m³ 1.40 1.40 1.19 下风向3# mg/m³ 1.30 1.46 1.50 浮选车间门口 mg/m³ 0.188 0.195 0.198 下风向2# mg/m³ 0.407 0.410 0.405 下风向3# mg/m³ 0.438 0.429 0.434 下风向3# mg/m³ 0.383 0.417 0.424 上风向0# mg/m³ 0.86 0.93 0.86 下风向1# mg/m³ 1.34 1.48 1.42 下风向2# mg/m³ 1.46 1.39 1.44 下风向3# mg/m³ 1.46 1.39 1.28 浮选车间门口 mg/m³ 1.89 1.84 1.88 上风向0# mg/m³ 0.195 0.198 0.193 下风向1# mg/m³ 0.407 0.410 0.395 下风向1# mg/m³ 0.407 0.410 0.395 下风向1# mg/m³ 0.407 0.410 0.395 下风向2# mg/m³ 0.447 0.440 0.429	整型 第一次 第三次 第三次 第四次 第四次 上风向0# mg/m³ 0.84 0.79 0.80 0.83 下风向1# mg/m³ 1.33 1.44 1.62 1.29 下风向2# mg/m³ 1.40 1.40 1.19 1.35 下风向3# mg/m³ 1.30 1.46 1.50 1.40 浮选车间门口 mg/m³ 0.188 0.195 0.198 0.193 下风向1# mg/m³ 0.407 0.410 0.405 0.398 下风向2# mg/m³ 0.438 0.429 0.434 0.426 下风向3# mg/m³ 0.383 0.417 0.424 0.407 上风向0# mg/m³ 0.86 0.93 0.86 0.92 下风向1# mg/m³ 1.34 1.48 1.42 1.24 下风向2# mg/m³ 1.46 1.39 1.44 1.28 下风向3# mg/m³ 1.46 1.39 1.44 1.28 下风向3# mg/m³ 1.46 1.39 1.44 1.28 下风向3# mg/m³ 1.89 1.84 1.88 1.80 上风向0# mg/m³ 0.195 0.198 0.193 0.195 下风向1# mg/m³ 0.407 0.410 0.395 0.409 下风向1# mg/m³ 0.407 0.410 0.395 0.409 下风向2# mg/m³ 0.407 0.410 0.395 0.409 下风向2# mg/m³ 0.447 0.440 0.429 0.428	整型点位 単位 第一次 第三次 第三次 第四次 最大値 第一次 第三次 第三次 第四次 最大値 第一次 第三次 第四次 最大値 第一次 第三次 第四次 最大値 第一次 第三次 第四次 第三次 第三次 第四次 第三次 第三次 第三次 第四次 第三次 第三次 第三次 第四次 第三次 第三次 第三次 第四次 第三次 第三	検測点位 単位 第一次 第三次 第三次 第四次 最大値 排放 限値 第一次 第三次 第三次

检测结果表明:验收检测期间,厂界无组织颗粒物最大浓度为 0.447mg/m³, 检测结果满足《铁矿采选工业污染物排放标准》(GB28661-2012)表 7 无组织 排放浓度限值要求;厂界无组织非甲烷总烃最大浓度为 1.62mg/m³,满足《工业 企业挥发性有机物排放控制标准》(DB13/2322-2016)表 2 企业边界大气污染物 浓度限值要求。 车间门口非甲烷总烃最大浓度为 1.95mg/m³,满足《工业企业挥发性有机物排放控制标准》(DB13/2322-2016)表 3 标准限值要求,同时满足《挥发性有机物无组织排放控制标准》(GB37822-2019)中附录 A 要求。

9.2.1.3 废水

项目废水检测结果见表 9.2-3。

检测结果 检测点位及 排放 达标 检测项目 单位 平均值/范围值 采样时间 限值 情况 第一次 第二次 第三次 第四次 化学需氧量 mg/L 15 21 17 19 18 350 达标 mg/L 悬浮物 17 19 23 18 19 250 达标 7.1~7.3 7.1 7 1 7.3 72 рΗ 6-9 达标 厂区废水排 (14.5°C) (14.3°C) (14.2°C) (14.1°C) (14.1°C~14.5°C) 2024.11.8 氨氮 14.0 14.5 14.1 达标 15.2 12.7 35 mg/L 五日生化需 mg/L 3.4 4.6 3.7 4.4 4.0 300 达标 氧量 动植物油类 mg/L 0.27 0.15 0.20 0.26 0.22 100 达标 化学需氧量 18 22 19 25 21 350 达标 mg/L 悬浮物 18 16 19 22 19 250 达标 mg/L 7.1 7.1 7.3 7.5 7.1~7.5 6-9 达标 рΗ 厂区废水排 (15.1°C~15.4°C) $(15.3^{\circ}C)$ (15.1C) $(15.4^{\circ}C)$ $(15.3^{\circ}C)$ П 2024.11.9 氨氮 mg/L 12.2 13.6 14.0 11.9 12.9 35 达标 五日生化需 4.6 4.0 300 mg/L 4.7 5.2 4.6 达标 氧量

表 9.2-3 废水检测结果表

检测结果表明:验收检测期间,厂区生活废水排口PH、化学需氧量、悬浮物、氨氮、五日生化需氧量、动植物油检测结果均满足《污水综合排放标准》 (GB8978-1996)表4中三级标准限值及曹妃甸城区污水处理厂进水水质要求。

0.22

0.22

0.23

100

达标

0.22

9.2.1.4 厂界噪声

项目厂界噪声检测结果见表 9.2-4。

mg/L

0.25

动植物油类

表 9.2-4 噪声测量结果表

单位: dB(A)

	时段	2024	.11.8	2024	1.11.9
点位		昼间: 19:17-19:38	夜间: 22:02-22:23	昼间: 18:20-18:41	夜间: 22:02-22:23
	1#北厂界[dB(A)	68	52	65	53
	排放限值	70	55	70	55
	达标情况	达标	达标	达标	达标
	主要声源		厂内生产设备及区	区域内人员车辆等	

检测结果表明:验收检测期间,项目北厂界噪声检测点昼间检测结果等效声级最大值为68dB(A),夜间检测结果等效声级最大值为53dB(A),检测结果满足《工业企业厂界环境噪声排放标准》(GB12348-2008)4类标准限值要求;项目东、南、西厂界紧邻其他企业。

9.2.2 污染物排放总量

项目无二氧化硫、氮氧化物排放;根据检测结果,生活污水排口纳管量为化 学需氧量 0.0085t/a, 氨氮 0.0059t/a, 生活污水排入曹妃甸城区污水处理厂。

9.3 工程建设对环境的影响

9.3.1 地下水监测结果及分析评价

地下水检测结果见表 9.3-1。

表 9.3-1 地下水检测结果表

 	检测项目	单位	检测	结果	平均值/范围值	排放 限值	达标
样时间	位例坝日	半世	第一次	第二次	一下均值/化固值	17F/IX PR1国.	情况
	рН	/	7.2(13.7°C)	7.1(13.9°C)	7.1~7.2 (13.7°C~13.9°C)	6.5≤pH≤8.5	达标
	高锰酸盐指数(耗氧量)	mg/L	19.0	19.4	19.2	≤3.0	不达标
	氨氮	mg/L	0.251	0.294	0.272	≤0.50	达标
	铁	mg/L	0.03L	0.03L	0.03L	≤0.3	达标
厂区南侧 2024.11.13	锰	mg/L	0.01L	0.01L	0.01L	≤0.10	达标
	汞	mg/L	0.00005	0.00004L	0.00004L	≤0.001	达标
	砷	mg/L	0.0008	0.0009	0.0008	≤0.01	达标
	氟化物	mg/L	0.54	0.43	0.48	≤1.0	达标
	石油类	mg/L	0.01L	0.01L	0.01L	≤0.05	达标

	рН	/	7.1(14.1°C)	7.1(14.0°C)	7.1 (14.0°C~14.1°C)	6.5≤pH≤8.5	达标
	高锰酸盐指数 (耗氧量)	mg/L	19.7	20.4	20.0	≤3.0	不达标
	氨氮	mg/L	0.335	0.308	0.322	≤0.50	达标
	铁	mg/L	0.03L	0.03L	0.03L	≤0.3	达标
厂区南侧 2024.11.14	锰	mg/L	0.01L	0.01L 0.01L		≤0.10	达标
	汞	mg/L	0.00004L	0.00004L	0.00004L	≤0.001	达标
	砷	mg/L	0.0006	0.0004	0.0005	≤0.01	达标
	氟化物	mg/L	0.40	0.54	0.47	≤1.0	达标
	石油类	mg/L	0.01L	0.01L	0.01L	≤0.05	达标

备注:"检出限+L"表示检测结果低于方法检出限。

检测结果表明:验收检测期间,厂区南侧检测井地下水水质 PH、氨氮、铁、锰、汞、砷、氟化物检测结果满足《地下水质量标准》(GB/T14848-2017)III类标准限值要求;石油类检测结果满足《地表水环境质量标准》(GB3838-2002)III类标准限值要求。耗氧量不符合《地下水质量标准》(GB/T14848-2017)III类标准限值要求,主要由于本区域原生地质原因造成的,区域耗氧量本底值高。本项目建成后未对周围产生明显环境影响。

10 验收监测结论

10.1 环境保护设施调试效果

10.1.1 有组织废气

验收检测期间,食堂油烟净化器油烟最大排放浓度为 0.9mg/m³, 检测结果满足《餐饮业大气污染物排放标准》(DB13/5808-2023)小型规模限值要求。

10.1.2 无组织废气

验收检测期间,厂界无组织颗粒物最大浓度为 0.447mg/m³, 检测结果满足《铁矿采选工业污染物排放标准》(GB28661-2012)表 7 无组织排放浓度限值要求; 厂界无组织非甲烷总烃最大浓度为 1.62mg/m³, 满足《工业企业挥发性有机物排放控制标准》(DB13/2322-2016)表 2 企业边界大气污染物浓度限值要求。

车间门口非甲烷总烃最大浓度为 1.95mg/m³,满足《工业企业挥发性有机物排放控制标准》(DB13/2322-2016)表 3 标准限值要求,同时满足《挥发性有机物无组织排放控制标准》(GB37822-2019)中附录 A 要求。

10.1.3 废水

验收检测期间,厂区生活废水排口 PH、化学需氧量、悬浮物、氨氮、五日生化需氧量、动植物油检测结果均满足《污水综合排放标准》(GB8978-1996) 表 4 中三级标准限值及曹妃甸城区污水处理厂进水水质要求。

10.1.4 厂界噪声

验收检测期间,项目北厂界噪声检测点昼间检测结果等效声级最大值为68dB(A),夜间检测结果等效声级最大值为53dB(A),检测结果满足《工业企业厂界环境噪声排放标准》(GB12348-2008)4类标准限值要求;项目东、南、西厂界紧邻其他企业。

10.1.5 固体废物

细粒尾砂暂存于库房内,将用于园区填方造地,后期或作为建筑材料外卖; 废包装袋外售废品回收站;厂区现有1座危废暂存间,废润滑油、废油桶产生后 暂存于现有危废间内, 定期交有资质单位处置; 生活垃圾由环卫部门收集处理。

10.1.6 污染物排放总量

本项目无二氧化硫、氮氧化物排放;根据检测结果,生活污水排口纳管量为化学需氧量 0.0085t/a, 氨氮 0.0059t/a, 生活污水排入曹妃甸城区污水处理厂。

10.2 工程建设对环境的影响

验收检测期间,厂区南侧检测井地下水水质 PH、氨氮、铁、锰、汞、砷、氟化物检测结果满足《地下水质量标准》(GB/T14848-2017) III类标准限值要求;石油类检测结果满足《地表水环境质量标准》(GB3838-2002) III类标准限值要求。耗氧量不符合《地下水质量标准》(GB/T14848-2017) III类标准限值要求,主要由于本区域原生地质原因造成的,区域耗氧量本底值高。本项目建成后未对周围产生明显环境影响。

10.3 建议

加强环保设施的维护、管理等工作,确保污染物稳定达标排放。

11 验收结论

唐山埔铭矿业有限公司年产200万吨铁精粉尾矿资源综合利用技改项目执行了建设项目环保"三同时"制度,落实了环评及批复中规定的污染防治措施;项目变化情况不属于重大变动;验收检测表明,污染物稳定达标排放;项目满足竣工环境保护验收条件。

12 建设项目竣工环境保护"三同时"验收登记表

填表单位: 唐山埔铭矿业有限公司

	· 7. 7. 7. 1	<u>ж•</u> /п ш	HI NI W TE HI PK	· A - 1										
	项目名	省称	唐山埔铭矿业有	有限公司年产 2	00 万吨铁精粉尾矿资	原综合利用技改项目	项目	代码	/		建设地点	唐山市曹	唐山市曹妃甸装备制造园区唐山埔铭矿业有限 公司现有厂区内	
	行业类别(分类	类管理名录)			铁矿采选		建设	:性质	□新 建□改扩	建 ☑技术改造	项目厂区中	心经度/纬度	东经 118°24′14.49	",北纬 39°10′0.30″
	设计生产	能力		年处理细	粒级尾矿 26.325 万吨		实际生产	能力	年处理细粒级尾矿 26.325 万吨		环评单位		河北太硕工程技术咨询有限公司	
建	环评文件审	批机关		唐山市	曹妃甸区行政审批局		审批	文号	唐曹审批环书〔2024〕4号		环评文	(件类型	报	告书
设	开工日	期			/		竣工	日期	/		排污许可	证申领时间		
项	环保设施设	计单位			/		环保设施	施工单位	/		本工程排污	5许可证编号	91130230MA0	9H165XM001X
目	验收单	位位		唐山埔铭矿业有限公司				监测单位	唐山瑞坤环境检	测服务有限公司	验收监	测时工况		/
	投资总概算	(万元)		1272.7				既算(万元)	63.6	535	所占比	例 (%)		5
	实际总投资	(万元)	1272.7				实际环保投	资(万元)	63.6	535	所占比	例 (%)		5
	废水治理 ((万元)	/ 废气治理(万元) / 噪声治理			哩(万元) /	固体废物治	理 (万元)	/		绿化及生		/ 其它(万	元) /
	新增废水处理	捏设施能力	1				新增废气处	理设施能力	/		年平均	日工作时	72	00h
	运营单位		唐	自山埔铭矿业有	限公司	运营单位社会统一位	言用代码(或组	织机构代码)	91130230MA	09H165XM	验收时间		/	
	污染物	物	原有排放量 (1)	本期工程实际排放浓度 (2)	本期工程允许排放 浓度 (3)	本期工程 产生量 (4)	本期工程 自身削减量 (5)	本期工程 实际排放量 (6)	本期工程核定排 放总量 (7)	本期工程 "以新带老" 削减量(8)	全厂实际 排放总量 (9)	全厂核定排 放总量 (10)	区域平衡 替代削减量(11)	排放增减量 (12)
污染	废水	(_	_	_	_	_	_	_	_	_	_	_	_
物排	化学需氧	氧量	_	_	_	_	_	_	_	_	_	_	_	_
放达	氨氮	ĺ		_	_		_	_	_	_		_	_	_
标与	石油刻	类	_	_	_	_	_		_	_		_	_	_
总量控制	废气	`		_	_	_	_		_		_	_		_
(T	二氧化		_	_	_	_	_	_	_	_	_	_	_	_
业 建	烟尘	-		_	_	_	_		_			_		_
设项	工业粉		_	_	_	_	_	_	_	_	_	_	_	_
目详 填)	氮氧化		_	_	_	_	_		_	_	_	_	_	_
49.7	工业固体	皮物	_	_	_	_	_		_	_	_	_	_	_
	与项目有关的	SS	_	_	_	_	_		_	_		_	_	_
	其它特征污染	总磷	_	_	_	_	_		_	_	_	_	_	_
	物物	——————————————————————————————————————	(工) 丰子拗加 (一	_	_	_			_		_	_	_

注: 1、排放增减量: (+)表示增加, (-)表示减少。

^{2、(12)=(6)-(8)-(11), (9) = (4)-(5)-(8)-(11)+ (1)。} 3、计量单位:废水排放量——万吨/年;废气排放量——万标立方米/年;工业固体废物排放量——万吨/年;水污染物排放浓度——毫克/升

检验检测报告

唐瑞坤检字 (环委) 第 202411-041 号

委托单位: 唐山埔铭矿业有限公司

被检单位: 唐山埔铭矿业有限公司

项目名称: 唐山埔铭矿业有限公司年产 200 万吨

铁精粉尾矿资源综合利用技改项目

检测项目:废气、废水、地下水、噪声

2024年11月22日

报告说明:

- 1、未经本公司书面同意,报告及数据不得用于广告及商业宣传。
- 2、报告无报告编制者、审核者和授权签字人签字无效。
- 3、报告无"唐山瑞坤环境检测服务有限公司检验检测专用章"及其骑缝章、CMA章无效。
- 4、对委托方自行采集的样品,仅对送检样品所检项目的符合性情况负责,送检样品的代表性和真实性由委托方负责;对不可复现的样品,检测结果仅对采样(或检测) 所代表的时间和空间负责。
- 5、检验检测报告涂改、增删无效。
- 7、若对报告有异议,请于收到报告之日起(以邮戳或签收日期为准)十五日内向本公司提出。
- 8、除委托方特别申明支付样品管理费,所有超过标准规定有效期的样品到期后均由本公司自行处理。

检验检测机构地址: 唐山市高新区太原路西侧大庆道南侧(清华道与太原路交叉口北行500米)

邮政编码: 063000

联系电话: 0315-6888678

电子邮箱: tsrkjc@163.com

一、基本情况

检测性质	委托检测		
被检单位	唐山埔铭矿业有限公司	被检单位 地址	唐山市曹妃甸装备制造园区
联系人	张庆宇	联系电话	15369510756
现场检测 (采样)时间	2024年11月8日至2024年11月9日、 2024年11月13日至2024年11月14日	现场检测 (采样)人员	任兆法、吴岩、白阳、张毅、李浩 冬、周国彬
检测日期	2024年11月9日至2024年11月21日	检测人员	张宇超、穆雨君、刘华香、韩旭静、 张海连
47V III	玻璃瓶 500mL*12、棕色玻璃瓶 1L*10、玻璃瓶 1L*16、棕色玻璃瓶 500mL*16、聚乙烯瓶 1L*24、金属滤筒*10 个、特氟龙气袋1L*42 个(含 2 个空白)、滤膜*34 个(含 2 个空白)	样品状态	无组织废气:金属滤筒、特氟龙气袋、滤膜完好无损;废水:黄色浅色浑浊异味;地下水:黄色浅色透明无味

二、检测	方案		
检测类别	检测点位	检测项目	检测频次
有组织废气	油烟净化器排气筒	Ruikun am esting	5 次/点/天, 检测 2 天
	厂界(上风向1点、下风向 3点)	非甲烷总烃、总悬浮颗粒物	4 次/点/天,
	浮选车间门口	非甲烷总烃	检测2天
废水	厂区废水排口	pH、化学需氧量、五日生化需氧量、悬浮物、氨氮、 动植物油类	4 次/点/天, 检测 2 天
地下水	厂区南侧	pH、高锰酸盐指数、氨氮、铁、锰、汞、砷、氟化 物、石油类	
噪声	厂界北	工业企业厂界环境噪声	检测2天,昼间、 夜间检测1次

三、分析方法

序号	项目名称	称 分析方法及方法来源					
		无组织废气					
1	总悬浮颗粒物	《环境空气 总悬浮颗粒物的测定 重量法》 HJ 1263-2022	/				
2	非甲烷总烃	《环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》 HJ 604-2017	$0.07 \mathrm{mg/m^3}$				

三、分析方法(续表)

序号	项目名称	分析方法及方法来源	检出限/最低检 测质量浓度
		有组织废气	•
1	油烟	《固定污染源废气 油烟和油雾的测定 红外分光光度法》 HJ 1077-2019	0.1mg/m ³
		废水	•
1	рН	《水质 pH 值的测定 电极法》HJ 1147-2020	/
2	悬浮物	《水质 悬浮物的测定 重量法》GB/T 11901-1989	/
3	五日生化需氧量	《水质 五日生化需氧量(BOD ₅)的测定 稀释与接种法》 HJ 505-2009	0.5mg/L
4	氨氮	《水质 氨氮的测定 纳氏试剂分光光度法》HJ 535-2009	0.025mg/L
5	化学需氧量	《水质 化学需氧量的测定 重铬酸盐法》 HJ 828-2017	4mg/L
6	动植物油类	《水质 石油类和动植物油类的测定 红外分光光度法》 HJ 637-2018	0.06mg/L
		地下水	
1	рН	《水质 pH 值的测定 电极法》HJ 1147-2020	/
2	高锰酸盐指数	《水质 高锰酸盐指数的测定》GB/T 11892-1989	0.5mg/L
3	氨氮	《水质 氨氮的测定 纳氏试剂分光光度法》HJ 535-2009	0.025mg/L
4	铁	《水质 铁、锰的测定 火焰原子吸收分光光 度法》 GB/T 11911-1989	0.03mg/L
5	锰	《水质 铁、锰的测定 火焰原子吸收分光光 度法》 GB/T 11911-1989	0.01mg/L
6	汞	《水质 汞、砷、硒、铋和锑的测 定原子荧光法》HJ 694-2014	0.4 μ g/L
7	砷	《水质 汞、砷、硒、铋和锑的测 定原子荧光法》HJ 694-2014	0.3 μ g/L
8	氟化物	《水质 氟化物的测定 离子选择电极法》 GB/T 7484-1987	0.05mg/L
9	石油类	《水质 石油类的测定 紫外分光光度法(试行)》 HJ 970-2018	0.01mg/L
		噪声	
1	工业企业 厂界环境噪声	《工业企业厂界环境噪声排放标准》 GB 12348-2008	/

——本页以下空白——

四、检测结果

1、无组织废气

检测项目及采样	检测点位	单位		检测	列结果		
时间	175 Act 175	- 平位	第一次	第二次	第三次	第四次	最大值
	上风向 0#	mg/m³	0.84	0.79	0.80	0.83	0.84
	下风向 1#	mg/m³	1.33	1.44	1.62	1.29	1.62
非甲烷总烃 2024.11.8	下风向 2#	mg/m ³	1.40	1.40	1.19	1.35	1.40
	下风向 3#	mg/m ³	1.30	1.46	1.50	1.40	1.50
	浮选车间门口 4#	mg/m ³	1.88	1.78	1.73	1.95	1.95
总悬浮颗粒物	上风向 0#	mg/m ³	0.188	0.195	0.198	0.193	0.198
	下风向 1#	mg/m ³	0.407	0.410	0.405	0.398	0.410
2024.11.8	下风向 2#	mg/m ³	0.438	0.429	0.434	0.426	0.438
	下风向 3#	mg/m ³	0.383	0.417	0.424	0.407	0.424
	上风向 0#	mg/m ³	0.86	0.93	0.86	0.92	0.93
	下风向 1#	mg/m ³	1.34	1.48	1.42	1.24	1.48
非甲烷总烃 2024.11.9	下风向 2#	mg/m ³	1.46	1.39	1.44	1.28	1.46
	下风向 3#	mg/m ³	1.46	1.39	1.28	1.27	1.46
	浮选车间门口 4#	mg/m³	1.89	1.84	1.88	1.80	1.89
	上风向 0#	mg/m³	0.195	0.198	0.193	0.195	0.198
总悬浮颗粒物	下风向 1#	mg/m³	0.407	0.410	0.395	0.409	0.410
2024.11.9	下风向 2#	mg/m³	0.447	0.440	0.429	0.428	0.447
	下风向 3#	mg/m³	0.421	0.421	0.407	0.424	0.424
: 以上数据仅对对	本次检测负责。	1					

2、废水

检测点位及	检测项目	**		检测			
采样时间	心验例护从日	单位	第一次	第二次	第三次	第四次	平均值/范围值
	化学需氧量	mg/L	15	21	17	19	18
	悬浮物	mg/L	17	19	23	18	19
厂区废水排口	рН	/	7.1 (14.3°C)	7.1 (14.5°C)	7.3 (14.2°C)	7.2 (14.1°C)	7.1~7.3 (14.1°C~14.5°C)
2024.11.8	氨氮	mg/L	15.2	12.7	14.0	14.5	14.1
	五日生化需 氧量	mg/L	3.4	4.6	3.7	4.4	4.0
	动植物油类	mg/L	0.27	0.15	0.20	0.26	0.22
	化学需氧量	mg/L	18	22	19	25	21
	悬浮物	mg/L	18	16	19	22	19
厂区废水排口	рН		7.1 (15.3°C)	7.1 (15.1°C)	7.3 (15.4°C)	7.5 (15.3°C)	7.1~7.5 (15.1°C~15.4°C)
2024.11.9	氨氮	mg/L	12.2	13.6	14.0	11.9	12.9
	五日生化需 氧量	mg/L	4.6	4.7	4.0	5.2	4.6
	动植物油类	mg/L	0.25	0.22	0.22	0.22	0.23
注: 以上数据	仅对本次检测	负责。					

3、地下水

检测点位及	检测项目	单位	检测	结果	TILL ALL CHEER ALL
采样时间	такухн	平位	第一次	第二次	平均值/范围值
	рН	/	7.2 (13.7°C)	7.1 (13.9°C)	7.1~7.2 (13.7°C~13.9°C)
	高锰酸盐指数 (耗氧量)	mg/L	19.0	19.4	19.2
	氨氮	mg/L	0.251	0.294	0.272
	铁	mg/L	0.03L	0.03L	0.03L
厂区南侧 2024.11.13	锰	mg/L	0.01L	0.01L	0.01L
	汞	mg/L	0.00005	0.00004L	0.00004L
	砷	mg/L	0.0008	0.0009	0.0008
	氟化物	mg/L	0.54	0.43	0.48
	石油类	mg/L	0.01L	0.01L	0.01L

地下水 (续表)

检测点位及	检测项目	单位	检测	结果	平松体/苯甲炔	
采样时间	和超级外内	平位	第一次	第二次	平均值/范围值	
	рН	/	7.1 (14.1°C) 7.1 (14.0°C)		7.1 (14.0°C~14.1°C)	
	高锰酸盐指数 (耗氧量)	mg/L	19.7	20.4	20.0	
	氨氮	mg/L	0.335	0.308	0.322	
	铁	mg/L	0.03L	0.03L	0.03L	
厂区南侧 2024.11.14	锰	mg/L	0.01L	0.01L	0.01L	
	汞	mg/L	0.00004L	0.00004L	0.00004L	
	砷	mg/L	0.0006	0.0004	0.0005	
	氟化物	mg/L	0.40	0.54	0.47	
	石油类	mg/L	0.01L	0.01L	0.01L	

注: "检出限+L"表示检测结果低于方法检出限; 以上数据仅对本次检测负责。

4、有组织废气

拉测指标	单位			监测结果	000000	>	ver 14. 44.
III. 83.1 H 1/3		第一次	第二次	第三次	第四次	第五次	平均值
	°C	16.5	16.5	16.7	16.7	16.3	16.5
‡气流速	m/s	5.3	5.3	5.2	5.2	5.3	5.3
气含湿量	%	2.37	2.42	2.46	2.49	2.53	2.45
排气流量		7539	7533	7380	7378	7526	7471
实测浓度	mg/m³	0.5	0.8	0.5	0.8	0.8	0.7
排放速率	kg/h	3.77×10 ⁻³	6.03×10 ⁻³	3.69×10 ⁻³	5.90×10 ⁻³	6.02×10 ⁻³	5.08×10 ⁻³
排气温度		16.5	16.5	16.9	16.4	16.2	16.5
排气流速		5.3	5.3	5.1	5.0	5.0	5.1
「含湿量	%	2.63	2.69	2.64	2.66	2.72	2.67
气流量	m³/h	7506	7500	7208	7076	7074	7273
实测浓度	mg/m³	0.9	0.8	0.6	0.5	0.7	0.7
排放速率	kg/h	6.76×10 ⁻³	6.00×10 ⁻³	4.32×10 ⁻³	3.54×10 ⁻³	4.95×10 ⁻³	5.11×10 ⁻³
排	放速率		放速率 kg/h 6.76×10 ⁻³	放速率 kg/h 6.76×10 ⁻³ 6.00×10 ⁻³	放速率 kg/h 6.76×10 ⁻³ 6.00×10 ⁻³ 4.32×10 ⁻³	放速率 kg/h 6.76×10 ⁻³ 6.00×10 ⁻³ 4.32×10 ⁻³ 3.54×10 ⁻³	接放速率 kg/h 6.76×10 ⁻³ 6.00×10 ⁻³ 4.32×10 ⁻³ 3.54×10 ⁻³ 4.95×10 ⁻³

5、工业企业厂界环境噪声

时段	2024	.11.8	2024	1.11.9			
点位	昼间: 19:17-19:38	夜间: 22:02-22:23	昼间: 18:20-18:41	夜间: 22:02-22:23			
1#北厂界 [dB(A)]	68	52	65	53			
主要声源							

注: 1#点位昼间 20min 车流量: 2024 年 11 月 8 日小型车 31 辆、中型车 15 辆、大型车 42 辆; 夜间 20min 车流量: 小型车 8 辆、中型车 3 辆、大型车 17 辆, 2024 年 11 月 9 日小型车 27 辆、中型车 11 辆、大型车 35 辆; 夜间 20min 车流量: 小型车 10 辆、中型车 4 辆、大型车 19 辆。以上数据仅对本次检测负责。

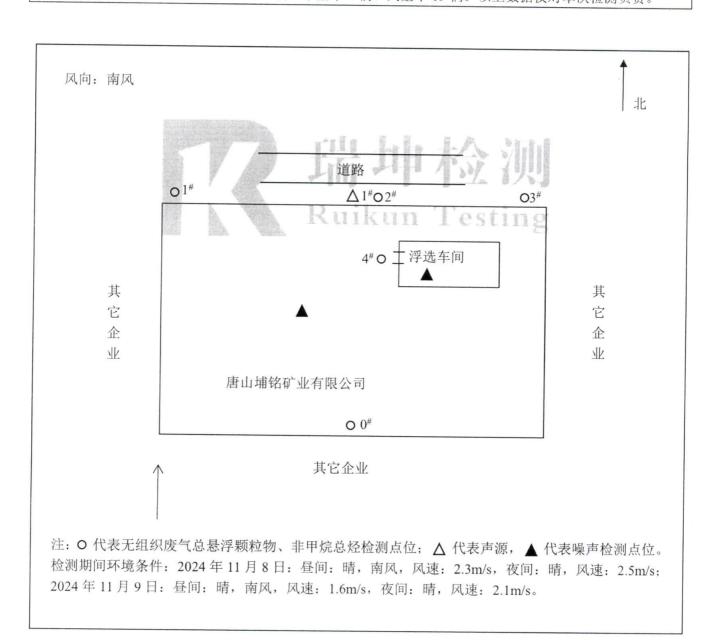


图 1: 无组织废气及噪声检测点位图

五、质量控制与保障

1、检测分析方法

表 5-1 检测分析方法、使用仪器名称一览表

<u> </u>	表 3-1 位侧分析方法、使用仪器名称一览表										
序号	项目名称	检测标准(方法)名称及编号(含年号)	仪器名称及型号								
		无组织废气									
			HN-6000X 真空气体采样箱								
			(TRKYQ-068-10~12)								
			HN-1000 真空箱气袋采样器								
1	非甲烷总烃	《环境空气 总烃、甲烷和非甲烷总烃的测定	(TRKYQ-068-14、15)								
		直接进样-气相色谱法》 HJ 604-2017	FB-8 风速仪(TRKYQ-069-2)								
			DYM3 空盒气压表(TRKYQ-007-8)								
			GC-6890A 气相色谱仪								
			(TRKYQ-057-1)								
			ZR-3923 环境空气颗粒物综合采样								
		PRINCIPAL OFFICE AND	器(TRKYQ-075-9~12)								
2	₩ 目 >∞ HE +> +	《环境空气 总悬浮颗粒物的测定 重量法》	FB-8 风速仪(TRKYQ-069-2)								
2	总悬浮颗粒物	HJ 1263-2022	DYM3 空盒气压表(TRKYQ-007-8)								
		1 / 1 -11 -11	SQP 电子天平(TRKYQ-098)								
			YKX-3WS 恒温恒湿间								
		Ruikun T	(TRKYQ-083-1)								
		有组织废气									
			ZR-3260 自动烟尘烟气综合测试仪								
1	油烟	《固定污染源废气 油烟和油雾的测定 红外	(TRKYQ-120-2)								
	114744	分光光度法》HJ 1077-2019	JLBG-121U 红外分光测油仪								
			(TRKYQ-041)								
		废水									
1	рН	《水质 pH 值的测定 电极法》HJ 1147-2020	PHBJ-260F 便携式 pH 计								
	pii	《水灰 ph 值的例是 电极宏》HJ 1147-2020	(TRKYQ-082-1)								
	E STATE	《水质 悬浮物的测定 重量法》	101-3B 电热鼓风干燥箱								
2	悬浮物	GB/T 11901-1989	(TRKYQ-060-2)								
			FA2204B 电子天平 (TRKYQ-016-2)								
	エロナル電気	// ** TUHU () **	BJPX-I-400 生化培养箱								
3	五日生化需氧 量	《水质 五日生化需氧量(BOD ₅)的测定 稀 释与接种法》HJ 505-2009	(TRKYQ-170)								
	-3-	件可按件7次// HJ 303-2009	JPB-607A 溶解氧测定仪								
		// 水压 复复的测点 体压 特别从业业 医生物	(TRKYQ-045-2)								
4	氨氮	《水质 氨氮的测定 纳氏试剂分光光度法》 HJ 535-2009	T6 新世纪紫外可见分光光度计								
-		《水质 化学需氧量的测定 重铬酸盐法》	(TRKYQ-055-2)								
5	化学需氧量	(水灰 化子而乳里的例と 里貸取益法》 HJ 828-2017	/								
	8 8 8 8 -	《水质 石油类和动植物油类的测定 红外分	H DC 101H /r H /\ \tau min \tau /\ \text{min \tau /\ \text{m								
6	动植物油类	光光度法》HJ 637-2018	JLBG-121U 红外分光测油仪								
		7474/X14// 11J 057-2010	(TRKYQ-041)								

表 5-1 检测分析方法、使用仪器名称一览表(续表)

序号	项目名称	检测标准 (方法) 名称及编号 (含年号)	仪器名称及型号							
地下水										
1	pН	《水质 pH 值的测定 电极法》HJ 1147-2020	PHBJ-260F 便携式 pH 计 (TRKYQ-082-1、2)							
2	高锰酸盐指数	《水质 高锰酸盐指数的测定》 GB/T 11892-1989	/							
3	氨氮	《水质 氨氮的测定 纳氏试剂分光光度法》 HJ 535-2009	T6 新世纪紫外可见分光光度计 (TRKYQ-055-2)							
4	铁	《水质 铁、锰的测定 火焰原子吸收分光光 度法》GB/T 11911-1989	GGX-830 原子吸收分光光度计 (TRKYQ-044)							
5	锰	《水质 铁、锰的测定 火焰原子吸收分光光度法》GB/T 11911-1989	GGX-830 原子吸收分光光度计 (TRKYQ-044)							
6	汞	《水质 汞、砷、硒、铋和锑的测 定原子荧光 法》HJ 694-2014	PF32 原子荧光光度计(TRKYQ-038-2)							
7	砷	《水质 汞、砷、硒、铋和锑的测 定原子荧光 法》HJ 694-2014	AFS-8520 原子荧光光度计 (TRKYQ-038)							
8	氟化物	《水质 氟化物的测定 离子选择电极法》 GB/T 7484-1987	PXSJ-216F 离子计(TRKYQ-054)							
9	石油类	《水质 石油类的测定 紫外分光光度法(试行)》 HJ 970-2018	T6 新世纪紫外可见分光光度计 (TRKYQ-055-2)							
		噪声	(*** 2 /							
1	工业企业 厂界环境噪声	《工业企业厂界环境噪声排放标准》 GB 12348-2008	FB-8 风速仪(TRKYQ-069-2) AWA6228+多功能声级计 (TRKYQ-052) AWA6021A 声校准器 (TRKYQ-005-5)							

2、人员资质

表 5-2 检测人员资质一览表

序号	姓名	上岗证编号
1	任兆法	TRKJR-96
2	周国彬	TRKJR-108
3	吴岩	TRKJR-114
4	白阳	TRKJR-105
5	张毅	TRKJR-119
6	李浩冬	TRKJR-104
7	穆雨君	TRKJR-72

表 5-2 检测人员资质一览表 (续表)

序号	姓名	上岗证编号
8	刘华香	TRKJR-45
9	张宇超	TRKJR-76
10	张海连	TRKJR-82
11	韩旭静	TRKJR-97

3、仪器设备

表 5-3 仪器使用情况

序号	设备名称	型号	公司编号	设备状态
1	真空气体采样箱	HN-6000X	HN-6000X TRKYQ-068-10~12	
2	真空箱气袋采样器	HN-1000	TRKYQ-068-14、15	正常
3	气相色谱仪	GC-6890A	TRKYQ-057-1	正常
4	环境空气颗粒物综合采样器	ZR-3923	TRKYQ-075-9~12	正常
5	空盒气压表	DYM3	TRKYQ-007-8	正常
6	电子天平	SQP	TRKYQ-098	正常
7	恒温恒湿间	YKX-3WS	TRKYQ-083-1	正常
8	风速仪	FB-8	TRKYQ-069-2	正常
9	自动烟尘烟气综合测试仪	ZR-3260	TRKYQ-120-2	正常
10	红外分光测油仪	JLBG-121U	TRKYQ-041	正常
11	便携式 pH 计	PHBJ-260F	TRKYQ-082-1、2	正常
12	生化培养箱	BJPX-I-400	TRKYQ-170	正常
13	溶解氧测定仪	JPB-607A	TRKYQ-045-2	正常
14	紫外可见分光光度计	T6 新世纪	TRKYQ-055-2	正常
15	电热鼓风干燥箱	101-1A	TRKYQ-060	正常
16	电子天平	FA2204B	TRKYQ-016-2	正常
17	原子吸收分光光度计	GGX-830	TRKYQ-044	正常
18	原子荧光光度计	AFS-8520	AFS-8520 TRKYQ-038	
19	原子荧光光度计	PF32	TRKYQ-038-2	正常

表 5-3 仪器使用情况 (续表)

序号	设备名称	型号	公司编号	设备状态
20	离子计	PXSJ-216F	TRKYQ-054	正常
21	多功能声级计	AWA6228+	TRKYQ-052	正常
22	声校准器	AWA6021A	TRKYQ-005-5	正常

4、样品管理

严格按照环境监测技术规范和有关环境检测质量保证的要求进行样品采集、 保存、分析等,全程进行质量控制。

一报告结束——

The second secon Ruikun Testing

报告编写:公司 审核: 久山 父 签

第 10 页 共 10 页

表 1 无组织废气检测结果表

检测项目及	松油上	24.42		监测	结果		B L 4L	排放	达标
采样时间	检测点位	单位	第一次	第二次	第三次	第四次	最大值	限值	情况
	上风向 0#	mg/m³	0.84	0.79	0.80	0.83	0.84		达标
	下风向 1#	mg/m ³	1.33	1.44	1.62	1.29	1.62		达标
非甲烷总烃 2024.11.8	下风向 2#	mg/m ³	1.40	1.40	1.19	1.35	1.40	2.0	达标
	下风向 3#	mg/m ³	1.30	1.46	1.50	1.40	1.50		达标
	浮选车间门口 4#	mg/m ³	1.88	1.78	1.73	1.95	1.95	4.0	达标
	上风向 0#	mg/m³	0.188	0.195	0.198	0.193	0.198		达标
总悬浮颗粒	下风向 1#	mg/m³	0.407	0.410	0.405	0.398	0.410		达标
物 2024.11.8	下风向 2#	mg/m³	0.438	0.429	0.434	0.426	0.438	1.0	达标
	下风向 3#	mg/m³	0.383	0.417	0.424	0.407	0.424		达标
	上风向 0#	mg/m³	0.86	0.93	0.86	0.92	0.93	2.0	达标
	下风向 1#	mg/m³	1.34	1.48	1.42	1.24	1.48		达标
非甲烷总烃 2024.11.9	下风向 2#	mg/m ³	1.46	1.39	1.44	1.28	1.46		达标
	下风向 3#	mg/m³	1.46	1.39	1.28	1.27	1.46		达标
	浮选车间门口 4#	mg/m³	1.89	1.84	1.88	1.80	1.89	4.0	达标
	上风向 0#	mg/m³	0.195	0.198	0.193	0.195	0.198		达标
总悬浮颗粒	下风向 1#	mg/m³	0.407	0.410	0.395	0.409	0.410		达标
物 2024.11.9	下风向 2#	mg/m³	0.447	0.440	0.429	0.428	0.447	1.0	达标
	下风向 3#	mg/m³	0.421	0.421	0.407	0.424	0.424		达标
		822-2019)、《铁矿	`采选工业	污染物排	多标准如文	GB28661-	2012)	
制标准》(GB37822-2019)、《铁矿采选工业污染物排放标准》(GB28661-2012) 经过检测,厂界无组织废气非甲烷总烃浓度符合《工业企业挥发性有机物排放控制标准》(DB13/2322-2016)表 2 中限值要求;厂界无组织废气总悬浮颗粒物液度符合《铁矿采选工业污染物排放标准》(GB28661-2012)表 7 中限值要求; 浮选车间门口非甲烷总烃浓度符合《工业企业挥发性有机物排放控制标准》(DB13/2322-2016)表 2 中限值要求,同时满足《挥发性有机物无组织排放控制标准》(GB37822-2019)表 A.1 中限值要求。									
: 以上数据位	又对本次检测负责	0							

表 2 有组织废气检测结果表

				10	2 円知5	及一个位例	1 4 木 农						
检测点位及	עו	拉测指标				监测结果			44.41.47	排放	是否		
采样时间	ш	血火打日水		単位		第一次	第二次	第二次 第三次 第四次 第五次		第五次	平均值	限值	达核
	月	卡气温度	°C	16.5	16.5	16.7	16.7	16.3	16.5				
	月	气流速	m/s	5.3	5.3	5.2	5.2	5.3	5.3				
油烟净化 器排气筒	排	气含湿量	%	2.37	2.42	2.46	2.49	2.53	2.45	/	/		
2024.11.8	扫	气流量	m³/h	7539	7533	7380	7378	7526	7471				
	油烟	实测浓度	mg/m ³	0.5	0.8	0.5	0.8	0.8	0.7	1.5	达标		
	7田7四	排放速率	kg/h	3.77×10 ⁻³	6.03×10 ⁻³	3.69×10 ⁻³	5.90×10 ⁻³	6.02×10 ⁻³	5.08×10 ⁻³	/	/		
	排气温度排气流速		°C	16.5	16.5	16.9	16.4	16.2	16.5				
			m/s	5.3	5.3	5.1	5.0	5.0	5.1				
油烟净化器排气筒	排生	排气含湿量		2.63	2.69	2.64	2.66	2.72	2.67	/	/		
2024.11.9	排	气流量	m ³ /h	7506	7500	7208	7076	7074	7273				
	油烟	实测浓度	mg/m ³	0.9	0.8	0.6	0.5	0.7	0.7	1.5	达标		
	TIII MAI	排放速率	kg/h	6.76×10 ⁻³	6.00×10 ⁻³	4.32×10 ⁻³	3.54×10-3	4,95×10°	5.11×10 ⁻³	/	/		
执行标准	《餐馆	次业大气污	染物排	放标准》	(DB13/580	8-2023) 力	型规模	A T	at				
7572	经过检测,油烟净化器排气筒所检饮食业油烟浓度符合《餐饮业大气污染物排放标准》(DB13/5808-2023)小型规模要求。												
主: 以上数	据仅列	付本次检测	负责。				检	验检测专用章					

表 3 废水检测结果表

表 3										
检测点位及	检测项目	单位		检测	l结果		瓜籽饼/茶田饼	排放	达标	
采样时间	шжуд	平位	第一次	第二次	第三次	第四次	平均值/范围值	限值	情况	
	化学需氧量	mg/L	15	21	17	19	18	350	达标	
	悬浮物	mg/L	17	19	23	18	19	250	达标	
厂区废水排口	рН	/	7.1 (14.3°C)	7.1 (14.5°C)	7.3 (14.2°C)	7.2 (14.1°C)	7.1~7.3 (14.1°C~14.5°C)	6-9	达标	
2024.11.8	氨氮	mg/L	15.2	12.7	14.0	14.5	14.1	35	达标	
	五日生化需 氧量	mg/L	3.4	4.6	3.7	4.4	4.0	300	达标	
	动植物油类	mg/L	0.27	0.15	0.20	0.26	0.22	100	达标	
	化学需氧量	mg/L	18	22	19	25	21	350	达标	
	悬浮物	mg/L	18	16	19	22	19	250	达标	
厂区废水排口	рН	/	7.1 (15.3°C)	7.1 (15.1°C)	7.3 (15.4°C)	7.5 (15.3°C)	7.1~7.5 (15.1°C~15.4°C)	6-9	达标	
2024.11.9	氨氮	mg/L	12.2	13.6	14.0	11.9	12.9	35	达标	
	五日生化需 氧量	mg/L	4.6	4.7	4.0	5.2	4.6	300	达标	
	动植物油类	mg/L	0.25	0.22	0.22	0.22	0.23	100	达标	
执行标准	《污水综合排放标准》(GR 9079 1006) 《污水排》 ##唐耳比喻 ** 图标准》(GR // 31062 2015)									
结论	经过检测,厂区废水排口中氨氮符合《污水排入城镇,水道水质标准》(GB/T 31962-2015)表									
注: 以上数据	仅对本次检测					检验检测	专用草			

表 4 地下水检测结果表

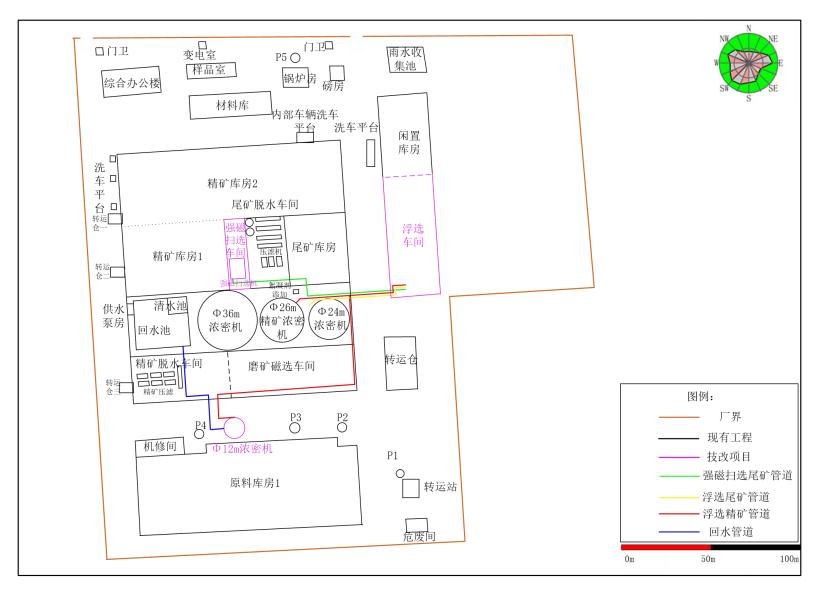
检测点位及	检测项目	单位	检测	 结果	W144 / # = 44	排放	达标		
采样时间	1268年74日	平位	第一次	第二次	平均值/范围值	限值	情况		
	рН	1	7.2 (13.7°C)	7.1 (13.9°C)	7.1~7.2 (13.7°C~13.9°C)	6.5≤pH≤8.5	达标		
	高锰酸盐指数 (耗氧量)	mg/L	19.0	19.4	19.2	≤3.0	不达林		
	氨氮	mg/L	0.251	0.294	0.272	≤0.50	达标		
口口去侧	铁	mg/L	0.03L	0.03L	0.03L	≤0.3	达标		
厂区南侧 2024.11.13	锰	mg/L	0.01L	0.01L	0.01L	≤0.10	达标		
	汞	mg/L	0.00005	0.00004L	0.00004L	≤0.001	达标		
	砷	mg/L	0.0008	0.0009	0.0008	≤0.01	达标		
	氟化物	mg/L	0.54	0.43	0.48	≤1.0	达标		
	石油类	mg/L	0.01L	0.01L	0.01L	≤0.05	达标		
	рН	/	7.1 (14.1°C)	7.1 (14.0°C)	7.1 (14.0°C~14.1°C)	6.5≤pH≤8.5	达标		
	高锰酸盐指数 (耗氧量)	mg/L	19.7	20.4	20.0	≤3.0	不达标		
	氨氮	mg/L	0.335	0.308	0.322	≤0.50	达标		
	铁	mg/L	0.03L	0.03L	0.03L	≤0.3	达标		
厂区南侧 2024.11.14	锰	mg/L	0.01L	0.01L	0.01L	≤0.10	达标		
	汞	mg/L	0.00004L	0.00004L	0.00004L	≤0.001	达标		
	砷	mg/L	0.0006	0.0004	0.0005	≤0.01	达标		
	氟化物	mg/L	0.40	0.54	0.47	≤1.0	达标		
	石油类	mg/L	0.01L	0.01L	0.01L	≤0.05	达标		
执行标准	《地下水质量标》 III类标准	隹》(GI	B/T 14848-2017	中III类标准	人员是标准	》(GB3838-200)2)中		
经过检测,所检地下水中石油类符合《地表水质量标准》(GB3838-2002)中III类标准要求;高 锰酸盐指数(耗氧量)不符合《地下水质量标准》:GB/T 14848-2017)中III类标准要求,其余 参数均符合《地下水质量标准》(GB/T 14848-2017)中III类标准要求。									

表 5 噪声检测结果表

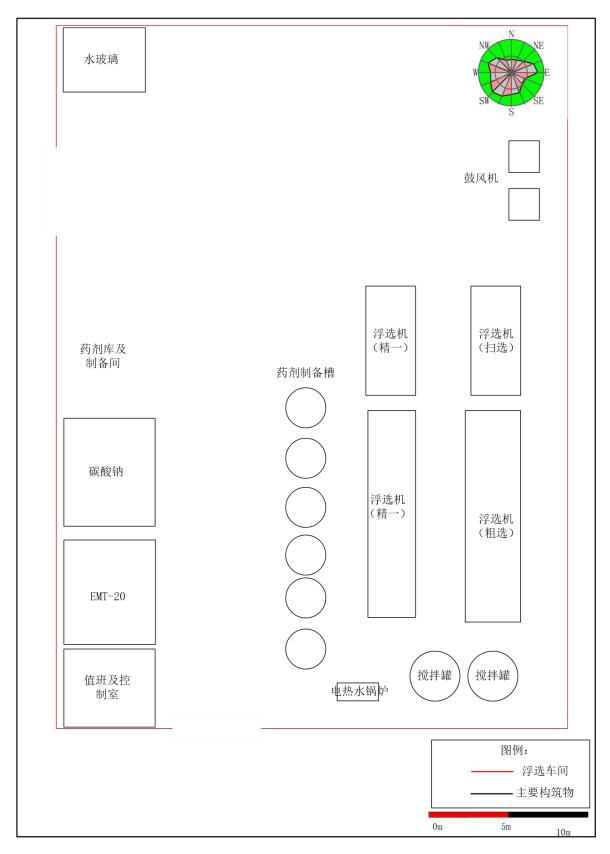
时段	2024	1.11.8	2024.11.9					
点位	昼间: 19:17-19:38 夜间: 22:02-22:23		昼间: 18:20-18:41	夜间: 22:02-22:23				
1#北厂界 [dB(A)]	68	52	65	53				
排放限值	70	55	70	55				
达标情况	达标	达标	达标	达标				
主要声源	厂内生产设备及区域	成内人员车辆等						
执行标准	《工业企业厂界环境噪声排放标准》(GB 12348-2608)表1中4类标准							
结论		北厂界昼间、夜间噪 2008表1中4类标准		界环境噪声排放				

注: 1#点位昼间 20min 车流量: 2024 年 11 月 8 日小型车 31 辆、中型车 15 辆、大型车 42 辆、夜间 20min 车流量: 小型车 8 辆、中型车 3 辆、大型车 17 辆, 2024 年 11 月 9 日小型车 27 辆、中型车 11 辆、大型车 35 辆; 夜间 20min 车流量: 小型车 10 辆、中型车 4 辆、大型车 19 辆。以上数据仅对44次检测负责。

附图


- 1、项目地理位置图;
- 2、项目平面布置图;

附件:


- 1、环评批复;
- 2、建设项目环境保护措施"三同时"落实情况表;
- 3、项目主体工程及环保设施现场彩色照片;
- 4、危险废物处理协议及资质;
- 5、排污许可登记回执;
- 6、突发环境事件应急预案备案证;
- 7、生产工况;
- 8、关于尾砂处置方案(园区会议纪要及复函);
- 9、项目环保设施竣工及调试公示情况;

附图 1 项目地理位置图

附图 2 技改后选厂平面布置图

附图 3 浮选车间平面布置图

1、环评批复

唐山市曹妃甸区行政审批局文件

唐曹审批环书 [2024] 4号

关于唐山埔铭矿业有限公司年产200万吨铁精 粉尾矿资源综合利用技改项目环境影响 报告书的批复

唐山埔铭矿业有限公司:

所报《唐山埔铭矿业有限公司年产 200 万吨铁精粉尾矿资源 综合利用技改项目环境影响报告书报批申请表》及相关材料收悉。 经研究,批复如下。

一、该项目位于唐山市曹妃甸装备制造园区唐山埔铭矿业有限公司现有厂区内,中心地理坐标为东经 118°24′14.49″, 北纬39°10′0.3″,总投资 1272.7万元(其中环保投资 63.635 万元)。项目对现有车间、库房进行改造,建设强磁扫选车间和 浮选车间,对现有尾矿中的细粒级尾矿进行二次选别。主要购置 强磁扫选机、强磁扫选精矿输送泵、强磁扫选尾矿输送泵、浮选 机、离心(罗茨)鼓风机、药剂添加计量泵、电热水锅炉、精矿浓 密机、精矿压滤机等设备及相关配套辅助设施。项目技改完成后, 计划年处理细粒级尾矿 26.325 万吨。

唐山市曹妃甸区行政审批局以唐曹审批投资备 (2024) 318 号文件为该项目备案。该项目符合《曹妃甸中小企业园区总体规划》及其审查意见、《曹妃甸中小企业园区总体规划(2017-2030) 环境影响补充报告》及其审查意见的相关要求。项目实施将对生态环境产生一定不利影响,在全面落实环境影响报告书提出的各项生态保护及污染防治措施后,不利影响能够得到减缓和控制。 我局原则同意环境影响报告书的环境影响评价总体结论和拟采取的环境保护措施。

- 二、项目建设和运行管理中应重点做好以下工作:
- (一)在设计、建设和运行中,按照"环保优先、绿色发展"的目标定位和循环经济、清洁生产的理念,采用国内外成熟可靠、技术先进、环境友好的工艺技术方案,选用优质装备,强化各装置节能降耗措施,减少污染物的产生量和排放量。
- (二)加强施工期环境管理。合理安排施工时间,优化施工工艺,防止工程施工造成的环境污染。选用低噪声施工机械、合理安排各类施工机械工作时间,确保施工场界噪声达到《建筑施

工场界环境噪声排放标准》(GB12523-2011)要求。

(三) 严格落实各项大气污染物防治措施。食堂安装油烟净 化器,油烟排放须满足《餐饮业大气污染物排放标准》 (DB13/5808-2023)表1小型规模限值要求。

加强生产各环节污染物无组织排放管理,车间及库房封闭, 库房及加药工序设置喷雾抑尘装置,厂区出口及精矿库房设置洗 车平台,运输车辆尾气排放须满足相关环保要求,颗粒物无组织 排放须满足《铁矿采选工业污染物排放标准》(GB28661-2012) 表7中限值要求。

- (四)严格落实各项水污染防治措施。以"雨污分流、一水 多用、达标排放"为原则,切实做好废水处理后回用工作,减少 新鲜水用量和废水产生量。项目浮选泡沫冲洗水经尾矿压滤、回 水池沉淀后循环利用,不外排。食堂废水经隔油处理后与其它生 活污水经市政污水管网排入曹妃甸城区污水处理厂,外排废水水 质须满足《污水综合排放标准》(GB8978-1996)表4中三级标准 及污水处理厂进水水质要求。严格按要求落实区防渗措施,防止 对地下水造成污染。
- (五)严格落实声环境保护措施。优化高噪声设备布局,优 先选用低噪声设备,采取隔声、减振等降噪措施,厂界噪声须符 合《工业企业厂界环境噪声排放标准》(GB12348-2008)中相关 要求。
 - (六)严格落实固体废物污染防治措施。严格按照有关规定,

对固体废物实施分类收集和处理、处置,做到资源化、减量化、 无害化。一般工业固废妥善处理,最大限度回收利用。废润滑油、 废油桶等危险废物按规定暂存,定期交有相应资质的危险废物处 理单位处理。危险废物暂存间应满足《危险废物贮存污染控制标 准》(GB18597-2023)要求。加强危险废物收集、出厂转移环节 的环境管理和风险防范。

- (七)加强环境风险防范,落实环境风险应急措施。制定和完善突发环境事件应急预案,与政府、园区等应急预案做好衔接,按照规定报相关部门备案。配备必要的应急设备和物资,加大风险监测和监控力度,定期进行应急培训和演练,有效防范和应对环境风险。
- (八)提高管理和运营水平,加大管理、技术人员培训力度, 加强非正常工况下的生态环境保护工作。从生态环境保护角度制 定完善检修和维修操作规范,进一步降低非正常工况发生频次和 污染物排放量。
- (九)建立与项目生态环境保护工作需求相适应的环境管理 制度,完善企业各项生态环境管理措施,加强生态环境管理。在 项目施工和运营过程中,主动发布企业环境保护信息,并自觉接 受社会监督。建立畅通的公众参与渠道,加强宣传与沟通工作, 及时解决公众反映的环境问题,满足公众合理的生态环境保护要求。
 - (十) 严格落实运营期的污染源和监测计划。建立包括废气

等各类污染源的监测管理体系,按照《排污单位自行监测技术指 南 总则》(HJ819-2017)、《排污许可证申请与核发技术规范 总 则》(HJ942-2018)及其他有关标准、规定要求,根据厂区平面布 置、地下水流向,合理设置监测点,制定环境监测计划并严格落 实,建立污染源监测台账制度,对地下水开展长期环境监测,保 存原始监测记录,定期向公众公布污染物排放监测结果。一旦出 现污染,立即启动应急预案和应急措施,减少对生态环境的不利 影响。

(十一)项目建设必须严格执行配套的环境保护设施与主体 同时设计、同时施工、同时投产使用的"三同时"制度。施工招 标文件和施工合同应明确环保条款和责任,认真落实施工期生态 环境保护工作。按规定程序自行开展竣工环境保护验收,环境影 响报告书经批准后,该项目的性质、规模、地点、生产工艺和环 境保护措施发生重大变动,且可能导致环境影响显著变化(特别 是不利环境影响加重)的,应当重新报批该项目环境影响报告书。 自环境影响报告书批复文件批准之日起,如超过5年方决定工程开 工建设的,环境影响报告书应当报我局重新审核。

(十二)启动生产设施或实际排污之前,你公司应按照经批准的环境影响评价文件认真梳理并确认各项环境保护措施落实后,依法办理排污许可相关手续。

三、你单位在接到本批复后20个工作日內,需将批复后的环境影响报告书送唐山市生态环境局曹妃甸区分局,并按规定接受

各级环境保护主管部门的监督检查。同时需按《建设项目环境保护"三同时"执行情况》要求,定期向唐山市生态环境局曹妃甸区分局报告项目环境保护"三同时"完成情况。

四、该项目的环境保护"三同时"制度落实日常监管由唐山市生态环境局曹妃甸区分局负责。

唐山市曹妃甸区行政审批局

2024年3月19日印发

2、建设项目环境保护措施"三同时"落实情况表

项目环保设施落实情况见下表:

项目	污染源	污染因子	环评要求治理措施	项目实际落实情况	符合性
	铁精粉堆存及装卸		封闭现有精矿库房+喷雾抑尘	封闭精矿库房+喷雾抑尘	符合
	细粒尾砂堆存及装卸		封闭现有尾矿库房+喷雾抑尘	封闭尾矿库房+喷雾抑尘	符合
	药剂投加	颗粒物	封闭浮选车间+喷雾抑尘	封闭浮选车间+喷雾抑尘	符合
废气	道路运输		运输车辆车斗采用苫布苫盖,地面硬化,洒水降尘等;设置洗车台	运输车辆车斗采用苫布苫盖,地面硬化,洒水降尘等; 设有洗车台	符合
	食堂	饮食油烟	经现有的油烟净化器净化通过排气筒至食堂 的楼顶排放	经现有的油烟净化器净化后排放	符合
	浮选泡沫冲洗水	SS、Fe	经现有的尾矿压滤后经现有回水池沉淀后循 环利用,不外排	经现有的尾矿压滤后经现有回水池沉淀后循环利用,不 外排	符合
废水	生活污水	COD、氨氮、 SS、BOD₅	经现有化粪池预处理排入曹妃甸城区污水处 理厂	经现有化粪池预处理排入曹妃甸城区污水处理厂	符合
	食堂废水	COD、氨氮、 SS、BOD ₅ 、 动植物油类	经现有油水分离器预处理排入曹妃甸城区污 水处理厂	经现有油水分离器预处理排入曹妃甸城区污水处理厂	符合
	尾矿干排	细粒尾砂	作为建筑材料外卖或填埋、土地复垦	用于园区填方造地或作为建筑材料外卖	符合
	药剂包装	废包装袋	清洗后外售废品回收站	清洗后外售废品回收站	符合
固体 废物	设备	废润滑油 废油桶	危废间暂存(现有 12m²),定期交有资质单位 处理	厂区现有 1 座危废暂存间,废润滑油、废油桶产生后暂 存于现有危废间内,定期交有资质单位处置	符合
	生活	生活垃圾	交环卫部门处理	交环卫部门处理	符合

噪声	强磁扫选机、浮选机、鼓风机、泵	等效连续 A 声级	基础减振、厂房隔声、鼓风机安装消声器	基础减振、厂房隔声、鼓风机安装消声器	符合
其他	环境管理	按要求	设置专职环保人员,制定环境管理制度	企业设有专职环保人员,制定有环境管理制度	符合
	①强磁扫选车间、浮选车间为一般防渗区,防渗措施: 抗渗混凝土防渗,厚度≥15cm,抗渗系数			①强磁扫选车间、浮选车间为一般防渗区,采用抗渗混	
防渗	$K \le 1.0 \times 10^{-7} \text{cm/s}$.		凝土防渗,厚度 25cm,抗渗系数 K≤1.0×10⁻7cm/s。		符合
	③其他地区进行非硬即绿			③其他地区进行非硬即绿	
				现有工程厂界已安装颗粒物在线监测仪 8 个,监测 TSP、	
依托	现有工程厂界已安装颗粒物在线监测仪 8 个,监测 TSP、PM ₁₀ 、PM _{2.5} 。			PM ₁₀ , PM _{2.5} ,	<i>/</i> */*
工程	厂区出口现有洗车设施1套、精矿库房出口现有洗车设施3套,现有内部车辆洗车设施1套。			厂区出口现有洗车设施1套、精矿库房出口现有洗车设	符合
				施3套,现有内部车辆洗车设施1套。	

3、项目主体工程及环保设施现场照片

主体工程

强磁扫选机

强磁扫选机

斜板浓密机

浮选调浆搅拌槽

浮选机 (粗选)

浮选机 (扫选)

浮选机 (精一)

浮选机 (精二)

药剂制备槽 (碳酸钠)

药剂制备槽 (S-02)

药剂制备槽 (EMT-20)

电热水锅炉

鼓风机

精矿浓密机

废气治理设施

封闭精粉库房

封闭浮选车间

库房内雾炮

精矿库房出口洗车设施(1#)

精矿库房出口洗车设施(2#)

精矿库房出口洗车设施(3#)

厂区出口洗车设施

厂区内部车辆洗车设施

颗粒物在线监测仪

颗粒物在线监测仪

颗粒物在线监测仪

食堂油烟净化器

废水治理设施

Φ24m 浓密机

回水池

食堂油水分离器

噪声治理措施

厂房隔声

基础减振

鼓风机消声器

固体废物治理措施

危险废物暂存间

分区标识

 分区标识
 管理制度

区标志

防爆灯

收集槽

垃圾收集箱

4、危险废物处理协议及资质

危险废物委托收集合同

合同编号: (唐) HBJL-CFD-2024-0008

委托方 (甲方):	唐山埔铭矿业有限公司		
注册地址:	唐山市曹妃甸中小企业园区庙中路南侧		
法人:	丁会伶	联系人:	A .
联系方式:		传真:	
电子邮箱:			
受托方 (乙方):	河北军绿再生资源有限公司		
注册地址:	唐山市迁西县经济开发区中区		
法人:	李俊宇	联系人:	
联系方式:		电话/传真:	0315-5989555
电子邮箱:	hbj15888@163.com		

鉴于:甲方生产过程中产生国家危险废物鉴别标准判定的工业危险废物,根据《中华人民共和国固体废物污染环境防治法》规定,该废物不得污染环境,应进行无害化收集。

现经甲、乙双方商议,乙方作为收集危险废物的专业机构,愿意接受甲方委托,收集甲方产生的上述危险废物。为此,双方依据《中华人民共和国固体废物污染环境防治法》、《中华人民共和国民法典》和有关环境保护政策,特订立本合同。乙方拥有的危险废物经营许可证编号: <u>唐危收试 2024001 号</u>

第一条 本合同壹式贰份,双方各执壹份,具有同等法律效力。合同经双方法人代表或者授权代表签字 并盖章后正式生效,有效期自 <u>2024</u> 年 <u>03</u> 月 <u>12</u> 日到 <u>2025</u> 年 <u>03</u> 月 <u>11</u> 日止。

第二条 甲方委托乙方对甲方产生的危险废物在有资质的场地进行合理合法收集,为了确保安全运输处置,甲方需给乙方提供危险废物的产生工序及废料成份,乙方有责任对甲方提供的相关信息保密。

第三条 双方责任:

甲方应对乙方的危险废物收集、利用的工艺技术、过程以及其他等商业信息进行保密。 **甲方责任**

- 3.1 甲方负责向属地环保局申请办理危险废物转移电子联单手续(如需纸质版转移联单,则无须办理电子联单手续)。
- 3.2 甲方负责将产生的危险废物进行收集、分类存放,粘贴危险废物标签,并向乙方提供危险废物清单,内容包括物品名称、类别、数量、物理形态、包装方式、危险特性成份等,名称不清楚的应在装车前核实。
- 3.3 甲方负责在厂内根据危险性质相容性原理选择合理材质包装(即废物不与包装物发生化学反应),确保危险废物不超过包装物最大容积的 90%,固态废物应有专用包装。
- 3.4 甲方所产生的危险废物连同包装物应全部交予乙方处理,合同期内不得将部分或全部危险废物 自行处理或者交由第三方处理,否则,乙方有权解除合同并要求甲方赔偿损失。
- 3.5 甲方负责分类、收集并暂时贮存本单位产生的危险废物,并负责危险废物的装车。收集和暂时 贮存、装车过程中发生的污染事故及人身伤害由甲方负责。
- 3.6 危废物料转移运送前,甲方应办理好电子转移联单、提前10 天以书面方式通知乙方。双方协商一致后,确定具体运输日期及其它事项(纸质版转移联单无须提前10 天通知乙方)。
 - 3.7 危险废物的包装不具备安全转运条件的甲方负责更换。
- 3.8 甲方应保证实际转运危险废物(液)与已接收样品大概一致, (符合我公司化验及接收波动范围), 如出现不一致情况, 乙方有权拒绝接收或另议价格,由此造成的损失由甲方承担。
 - 3.9 甲方危险废物出现下列情况的, 乙方有权拒收, 因此产生的费用由甲方负责。
- (1) 甲方的危险废物未列入本合同(特别是含有易燃易爆性物质、放射性物质、剧毒性物质、多 氯联苯等高危性物质);
 - (2) 标识不规范或错误; 包装破损或密封不严;
 - (3) 其他违反危险废物包装、运输的国家标准、行业标准及通用技术条件的异常情况。

乙方责任

- 3.10 乙方应向甲方提供合法有效的危险废物经营许可证及有关资质证明。
- 3.11 乙方应提供已具备收集危险废物所需的条件和设施,确保收集过程中不产生二次污染,防止各类污染事故发生。
 - 3.12 乙方运输车辆应接双方商定的时间到甲方指定地点装运合同约定的危险废物。
- 3.13 乙方运输车辆以及司机、押运员,应在甲方厂区内文明作业并遵守甲方的相关环境以及安全管理规定,接受甲方的监督管理。

第四条 委托收集危险废物的计量、收费标准和结算

- 4.1 甲方委托乙方收集的危险废物计量应以乙方收集场所的称重为准。经双方确认有效。如有异议,可以由双方公认的第三方复磅,复磅费用由提出异议方承担。
- 4.2 合同签订后三日内,甲方应支付乙方技术服务费 <u>3500</u> 元(大写: 叁仟伍佰元整),此费用 包含壹吨废油的收集费用及壹次清理服务费。

4.3 委托处置的危险废物加下,

序号	危险废物名称	废物类别	编号	收集預估量 (吨)	收集费 单价(元/吨)
1	废油	HW08	900-214-08	按实际产生量	4000
2	废油桶	HW08	900-249-08	按实际产生量。	4000

企业所产生的危险废物在河北军绿再生资源有限公司收集范围内的,均为委托收集的危险废物。

4.4结算方式

危废物料一次性转运完成,全部危废物料转移完成后十日内, 双方按照实际发生数量结清全部费用。费用全部结清后, 乙方为甲方开具相关票据。如甲方不按合同约定的日期支付乙方收集费用, 则需支付乙方合同总款 20%的违约金, 每逾期一日另加收合同总额千分之一的滞纳金。若甲方需要乙方先开具发票后付款, 此发票不作为乙方已收到废物收集技术服务费及清理服务费用的结算凭据, 款项结算以乙方指定银行帐户实际到帐为准。

4.5 乙方开户银行名称和账户信息:

单位名称:	河北军绿再生资源有限公司
开户银行:	建行唐山裕华道支行
银行账号:	1305 0162 5652 0000 1187

第五条 合同的违约责任

- 5.1 甲乙双方不按合同规定条款执行的,给另一方造成损失(害)的,应承担相应的违约责任及法律责任,受损失(害)方可以解除本合同。
- 5.2 因甲方自行处置或委托除乙方外第三方处置所产生的危险废物,乙方不负责因此产生的法律责任,且乙方有权解除合同,并由甲方赔偿乙方相关损失。
 - 5.3 甲方不按期支付乙方收集费用时,乙方有权解除合同并向甲方主张违约赔偿。
- 5.4 甲方所交付的危险废物不符合本合同约定的,乙方有权拒绝收运,因此产生的费用均由甲方承担。出现实际转移的危废物料与取样或与合同不符的,已经转移收运的,甲方应赔偿乙方全部损失,因此产生的所有法律责任均由甲方承担。

第六条 以上所涉及的内容双方共同遵守,未尽事宜双方可根据具体情况协商签定补充合同或协商修改相应条款,补充合同与本合同具有同等法律效力。

第七条 双方因履行本合同而发生争议,应协商、调解解决。协商、调解不成的,双方均有权向当地法院提起诉讼。

第八条 备注

7

曲	方: _	唐山埔铭矿业有限公司	(单位盖章)
法	人: _	世 4 多	(签字)
委托代	理 人:	台同专用意型	(签字)
签订	日期:	2024 年 03 月 12 日	
	_	7, 12	
۷	方:	河北军绿再生资源有限祭录。	(単位蓋章)
	方: 人:		(単位盖章) (签字)
乙 去 委 托 代	人:	河北军绿再生资源有限祭录	

温馨提示: 请于合同到期前一个月内进行合同续签。

统一社会信用代码 91130227MA0FGGU29M

信息公示系统" 了解更多登记。

备案, 许可, 监 扫檔二維码臺東 "国家企业信用

期 2020年09月21日 注册资本重任万元整 Ш 中 沿

有限责任公司(自然人投资或控股)

型

米

李筱字

 \prec 代表、

完

地

1

炽 叫

松

河北军绿再生资源有限公司

松

竹

河北省唐山市迁西县经济开发区中区 出

一般项目,再生资源加工,再生资源销售,再生资源回收(除生产性<mark>使用</mark> 金屬),生产性废旧金属回收,资源再生利用按 水研发,固体废物治理; 新能源汽车废旧动力蓄电池回收及梯次利用(不含危险废物绘者),非金 區废料和碎屑加工处理;专用设备制造(不含许可类专业设备制造);照 明器具销售,电气设备销售,灯具销售,五金产品零售,五金产品批发,

计算机软硬件及辅助设备零售。电子产品销售,建筑材料销售,金属材料销售。 日用品销售。金属制品销售。按本服务、技术开发、技术咨询、技术交流、技术培工、金融制品销售。在您应该验益指的项目外、凭着业执照度 法注目主开展经营活动,许可项目,危险废绩验益,报废机动车拆解。报 医电动汽车回收抗解,报废机动车回收,废弃电器电子产品处理,道路货物运输(不含危险货物)。(依法须经批准的项目,基相关部门批准后方可开展整营活动,具体经营项目以相关部门批准文件或许可证件为准)

2023

Ш

国家市场监督管理总局监制

国家企业信用信息公示系统网址:http://www.gsxt.gov.cn

市场主体应当于每年1月1日至6月30日通过国 家企业信用信息公示系统报送公示年度报告。

唐 山 市 生 态 环 境 局

唐环函[2023]31号

唐山市生态环境局 关于同意河北军绿再生资源有限公司延续小微 企业危险废物收集试点资质的复函

河北军绿再生资源有限公司:

依据你单位申请,我局经研究认为你单位具备延续小微企业 危险废物收集试点条件,在你单位严格执行有关规定的条件下, 原则同意你单位继续开展小微企业危险废物收集经营活动。有关 情况函复如下:

试点单位编号: 唐危收试 2024001 号

法定代表人: 李俊宇

危险废物贮存设施所在地: 唐山市迁西县经济开发区中区(经度: 118.359655° 纬度: 40.159857°)

收集类别:包括 HW03 废药物药品(900-002-03), HW04 农药废物(263-011-04、263-012-04 除外), HW05 木材防腐剂废物(201-001-05、201-002-05、201-003-05、900-004-05), HW06 废有机溶剂与含有机溶剂废物(900-401-06、900-409-06), HW08 废矿物油与含矿物油废物, HW09 油/水、烃/水混合物或乳化液

, HW11 精 (蒸) 馏残渣 (261-133-11、261-134-11、261-135-11 、261-136-11、772-001-11 除外), HW12 染料、涂料废物, HW13 有机树脂类废物, HW16 感光材料废物, HW17 表面处理废物, HW18 焚烧处置残渣(772-002-18除外), HW19 含金属羰基化合物废 物, HW20 含铍废物, HW21 含铬废物 (193-001-21、193-002-21 除外), HW22 含铜废物, HW23 含锌废物, HW24 含砷废物, HW25 含硒废物, HW29 含汞废物, HW30 含铊废物, HW31 含铅废物(900-05 2-31 除外), HW35 废碱(251-015-35、261-059-35、193-003-35 、221-002-35 除外), HW36 石棉废物(261-060-36、900-030-36 、900-031-36、900-032-36), HW37 有机磷化合物废物, HW40 含醚废物, HW45 含有机卤化合物 (261-081-45), HW46 含镍废 物 (900-037-46), HW48 有色金属采选和冶炼技术 (321-016-48 、321-017-48、321-021-48、321-022-48 除外), HW49 其他废 物, HW50 废催化剂; 不包括医疗废物, 废酸, 反应性危险废物 和废弃剧毒化学品,省内和省外均无明确利用处置途径的危险废 物等。

收集地域范围: 唐山市域范围

收集规模: 87440 吨/年

试点开展时段: 2024年1月1日-2025年12月31日

收集服务对象:原则上限于危险废物年产生总量 10 吨以下的小微企业,同时兼顾机关事业单位、科研机构和学校等单位和社会源,以及年委托外单位利用处置总量 10 吨以下的其他单位。

本复函作为你单位开展小微企业危险废物收集经营活动的 合法依据,不得转借其他单位使用,请你单位规范管理,严格落 实环境影响评价和排污许可管理制度的相关规定,守法经营。

抄送: 唐山市生态环境局各县(市、区)分局

5、排污许可登记回执

固定污染源排污登记回执

登记编号:91130230MA09H165XM001X

排污单位名称: 唐山埔铭矿业有限公司

生产经营场所地址: 唐山市曹妃甸中小企业园区庙中路南

统一社会信用代码: 91130230MA09H165XM

登记类型:□首次□延续☑变更

登记日期: 2024年10月15日

有效期: 2024年10月15日至2029年10月14日

注意事项:

- (一) 你单位应当遵守生态环境保护法律法规、政策、标准等,依法履行生态环境保护责任和义务,采取措施防治环境污染,做到污染物稳定达标排放。
- (二) 你单位对排污登记信息的真实性、准确性和完整性负责,依法接受生态环境保护检查和社会公众监督。
- (三)排污登记表有效期内,你单位基本情况、污染物排放去向、污染物排放执行标准以 及采取的污染防治措施等信息发生变动的,应当自变动之日起二十日内进行变更登记。
- (四) 你单位若因关闭等原因不再排污, 应及时注销排污登记表。
- (五)你单位因生产规模扩大、污染物排放量增加等情况需要申领排污许可证的,应按规 定及时提交排污许可证申请表,并同时注销排污登记表。
- (六) 若你单位在有效期满后继续生产运营, 应于有效期满前二十日内进行延续登记。

更多资讯,请关注"中国排污许可"官方公众微信号

6、突发环境事件应急预案备案证

企业事业单位突发环境事件应急预案备案表

	唐山埔铭矿业有限公司	机构代码	91130230MA09H165XM
法定代表人	丁会伶	联系电话	ray payery sing
联系人	邢正权	联系电话	19131562136
传 真	-	电子邮箱	可罗克克斯斯克
地址		4′14.49″,北纬 甸中小企业园区	
预案名称	唐山埔铭矿业有	限公司突发环境	意事件应急预案
风险级别	"一般-大气	(Q0) "+"一般·	水 (Q0) "
	. 1-4	共的相关文件及	100E1 1000

2024年[[月]日

报送时间

T会给

预案签署人

1.突发环境事件应急预案备案表; 2.环境应急预案及编制说明: 环境应急预案(签署发布文件、环境应急预案文本); 突发环境 编制说明(编制过程概述、重点内容说明、征求意见及采纳情况说明、评审情 事件应急 况说明); 预案备案 3.危险废物专项应急预案; 文件目录 4.环境风险评估报告; 5.环境应急资源调查报告; 6.环境应急预案评审意见。 该单位的突发环境事件应急预案备案文件已于 1 月 日收讫,文 件齐全, 予以备案。 备案意见 案受理部门(公章)年 (月)日 130209-2024-141-L 备案编号 报送单位 受理部门 经办人 负责人

唐山埔铭矿业有限公司 年产 200 万吨铁精粉尾矿资源综合利用技改项目生产工况

名 称	设计处理量(吨/天)	实际处理量(吨/天)	日期	
	877.5	815	2024.11.8	
细粒级尾矿	877.5	801		
细粒级准制	877.5	810	2024.11.13	
	877.5	833	2024.11.14	

8、关于尾砂处置方案(园区会议纪要及复函)

中共唐山市曹妃甸装备制造园区工作委员会

会议纪要

【2021】11号

会议时间: 2021年11月22日

会议地点:金岛大厦4层党员活动室

主 持 人: 崔建军

参加人员: 郑新生、蔡振华、刘笑羽

列席人员:刘楠楠、刘海龙、陈少锋、王济民、艾昌生、王 斌

会议记录:彭硕

会议主要内容和议定事项

11 片 22 日,装备制造园区召开党工委会议,会议听取了绩效考核指标完成情况、近期重点工作、疫苗接种、贸易项目税收资金扶持及文丰集团成立党总支工作情况。

一、绩效考核指标

1、经济发展局、投资贸易促进中心负责紧盯绩效考核指标工作,近期能认证的指标力争在11月底前完成认证工作;公财税收、实际利用外资等完成困难的指标要加大工作力度,积极想办法、出对策,力争完成全年工作任务。

二、关于项目建设

- 2、经济发展局负责认真梳理 2022 年项目盘子,确保一季度 开工项目达到 11 个、二季度开工项目达到 10 个。
- 3、经济发展局负责结合投促中心对明年新开工作项目进行 专题调度,发现问题、解决问题,力促项目尽早开工建设。

三、关于规划建设工作

- 4、建设和环境管理局负责做好辖区在建项目施工现场管理 扬尘治理工作,督促企业尽快做好道路硬化及路面洒水工作。
- 5、根据当前建材、选矿企业频发矿泥随意倾倒的现象,由建设和环境管理局负责抓紧对珏海、世恒、浦明矿业等单位矿泥产生数量、处理途径及矿泥成分化验情况进行调查统计。如企业有园区协助解决处理的需求,且经专家论证,其矿泥能用于填方

造地,建设局可结合园区填方造地规划,引导产生矿泥企业通过 给园区无偿填方造地的方式,解决其矿泥处理问题,实现园区和 企业的双嬴。请建设局抓紧调研,制定具体实施方案,报管委会 研究批准后规范推进。

6、建设和环境管理局负责结合投促中心,做好园区企业用 电模底工作。

四、关于招商引资工作

7、投资贸易促进中心负责坚定不移按照既有招商思路开展招商引资工作,依托产业链招商、以商招商的方式,不断充实园区再谈项目储备,为明年工作做好坚实基础。

五、关于木材产业工作

8、木材服务中心负责紧盯天坛二期项目,加大对天坛下游 产业引进工作力度,力争明年取得新突破。

六、关于信访、安全生产、环保工作

9、企业服务中心负责做好园区信访隐患摸底工作,做好研判分析;负责按照要求做好建筑施工工地安全生产督导检查工作,确保不再发生安全生产事故;负责按照要求做好环保工作,加大督导检查力度,确保环保工作不出问题。

七、关于机关建设工作

- 10、综合办公室负责制定十九届六中全会学习方案,组织好 专题学习工作。
- 11、综合办公室负责坚持做好党史学习教育相关工作,确保 做好规定动作。

12、会上蔡振华同志汇报了文丰实业集团申请成立党总支工作事宜,经园区党工委研究,同意文丰实业实业集团成立党总支。由综合办公室负责做好相关工作。

八、关于疫苗接种工作

13、经济发展局、企业服务中心、建设和管理局、木材服务中心负责做好12月疫苗接种摸底工作,确保完成疫苗接种工作任务。

九、关于贸易项目税收资金扶持返还工作事宜

14、会上,投资贸易中心主任陈少锋同志,汇报了闵诚物流等贸易物流项目的经营状况,蔡振华同志作为主管投资贸易中心的主管领导,阐述了辰哲(唐山)国际贸易有限公司、唐山市曹妃甸区永顺隆商贸有限公司、唐山闵诚物流有限公司和唐山曹妃甸满盈供应链管理有限公司四家物流、贸易项目申请财政资金返还具体情况,经征求其他班子领导意见后,其他班子领导对上述四家物流、贸易项目建设资金财政资金返还事宜无意见,崔建军同志作为主要负责同志最后发言,表示:经讨论同意按照协议要求,拨付四家物流、贸易项目扶持资金 224668.51 元。

曹妃甸装备制造园区管理委员会

曹妃甸装备制造园区管理委员会 关于唐山埔铭矿业利用尾矿砂土为园区无 偿造地的请示的复函

唐山埔铭矿业有限公司:

你公司关于《恳请利用尾矿砂土为园区无偿造地》的请示已收悉,园区管委会原则同意你公司意见。填方的具体位置及标准,请严格按照园区相关要求实施。

特此通知。

9、项目环保设施竣工及调试公示情况

河北生态信息网

请输入关键字

⑤ 您当前的位置: 首页 > 公示公告 > 详情

唐山埔铭矿业有限公司年产200万吨铁精粉尾矿资源综合利用技改项目配套建设的环境保护 设施竣工及调试公示

更新时间: 2024-10-12 14:38:34 访问量: 23

唐山埔铭矿业有限公司年产200万吨铁精粉尾矿资源综合利用技改项目位于唐山市曹妃甸装备制造园 区唐山埔铭矿业有限公司现有厂区内,项目于2024年3月19日取得唐山市曹妃甸区行政审批局关于本项目 的批复(唐曹审批环书[2024]4号),项目年处理细粒级尾矿26.325万吨。

2024年3月25日开工建设,2024年10月10日项目主体工程及配套建设的环境保护设施等建设完成;20 24年10月15日计划开始调试,调试日期2024年10月15日至2025年1月14日。

现依法进行竣工公示。

唐山埔铭矿业有限公司 2024年10月12日

唐山埔铭矿业有限公司 年产 200 万吨铁精粉尾矿资源综合利用技改项目 竣工环境保护验收意见

2024年12月28日,唐山埔铭矿业有限公司根据《唐山埔铭矿业有限公司年产200万吨铁精粉尾矿资源综合利用技改项目竣工环境保护验收监测报告》并对照《建设项目竣工环境保护验收暂行办法》,严格依照国家有关法律法规、建设项目竣工环境保护验收技术规范/指南、本项目环境影响报告书和审批部门审批决定等要求对本项目进行验收,提出意见如下:

一、工程建设基本情况

- (一)建设地点、规模、主要建设内容
- (1)项目名称: 年产 200 万吨铁精粉尾矿资源综合利用技改项目。
- (2)建设单位: 唐山埔铭矿业有限公司。
- (3)建设地点:项目位于唐山市曹妃甸装备制造园区唐山埔铭矿业有限公司现有厂区内。
 - (4)建设性质: 技改。
 - (5)生产规模: 年处理细粒级尾矿 26.325 万吨。
- (6)项目组成与建设内容:项目对现有生产车间、库房进行改造,建设强磁扫选车间和浮选车间,主要建设有强磁扫选机、强磁扫选精矿输送泵、强磁扫选尾矿输送泵、斜板浓密机、浮选机、离心(罗茨)鼓风机、药剂添加计量泵、电热水锅炉、精矿浓密机等设备及相关配套辅助设施等。

(二)建设过程及环保审批情况

环境影响报告书编制及审批情况: 2024年2月,企业委托河北太硕工程技术咨询有限公司编制了《唐山埔铭矿业有限公司年产 200万吨铁精粉尾矿资源综合利用技改项目环境影响报告书》,2024年3月19日,唐山市曹妃甸区行政审批局以唐曹审批环书〔2024〕4号文对本项目环境影响报告书进行了批复。

2024年3月25日开工建设,2024年10月10日项目建设完成,2024年10月15日开始调试。企业已变更排污登记,登记编号:91130230MA09H165XM001X。

验收工作组签名:

第1页共4页

(三)投资情况

项目总投资 1272.7 万元, 其中环保投资约 63.635 万元, 占工程总投资的 5%。

(四)验收范围

环境影响报告书及批复要求的实际建设内容。

二、工程变动情况

- 1、为保证浮选效率,在强磁扫选工序后增加1个斜板浓密机,对强磁扫选后的 尾矿进行浓缩处理后再进入浮选系统,斜板浓密机溢流水返回现有Φ36m 尾矿浓密机,未新增污染物。
 - 2、药剂添加计量泵减少3台。

依据《污染影响类建设项目重大变动清单(试行)》的通知(环办环评函[2020]688 号),以上变化不属于重大变动。

三、环境保护设施建设情况

(一) 废水

项目产生的废水包括浮选泡沫冲洗水、生活污水、食堂废水。

项目浮选泡沫冲洗水经现有的尾矿干排系统(浓密池+压滤+回水池)处理后循环利用,不外排;食堂废水经油水分离器处理后与其它生活污水一并进入化粪池预处理,处理后经市政污水管网排入曹妃甸城区污水处理厂。

(二)废气

项目废气污染源主要为铁精粉堆存及装卸废气、细粒尾砂堆存及装卸废气、药剂投加废气、道路运输扬尘、食堂油烟。

项目建有封闭浮选车间,投料过程喷雾抑尘;项目建有封闭的精矿库房及尾矿库房,库房内分别设有喷雾抑尘设施;厂区运输道路硬化,运输车辆进行苫盖,设有洒水车定时对运输道路洒水抑尘;厂区出口及精矿库房出口设有洗车平台等。食堂油烟经现有的油烟净化器净化后排放。

(三)噪声

项目主要噪声源为强磁扫选机、浮选机、鼓风机、泵等。

项目采用低噪声设备、基础减振、厂房隔声、鼓风机安装消声器等措施。

(四) 固体废物

验收工作组签名:

第二年 海城 一次 1800年 1

固体废物为细粒尾砂、废包装袋、废润滑油、废油桶和生活垃圾。

细粒尾砂产生后暂存于库房内,拟按照园区相关要求进行处置;废包装袋外售废品回收站;厂区现有1座危废暂存间,废润滑油、废油桶产生后暂存于现有危废间内,定期交有资质单位处置;生活垃圾由环卫部门收集处理。

(五)辐射

项目无辐射源。

(六) 其他

- 1、防渗措施: 强磁扫选车间、浮选车间地面采用抗渗混凝土防渗,厚度 25cm, 抗渗系数 K≤1.0×10⁻⁷cm/s。
- 2、环境风险防范设施:厂区设有灭火器、消防沙、消防锹等应急物资,企业已修编突发环境事件应急预案并备案,备案编号:130209-2024-141-L。

四、环境保护设施调试效果

- (一) 环保设施处理效率
- 1、废气治理设施 根据检测结果,厂界废气达标。
- 2、废水治理设施

生产废水循环使用,不外排。根据检测结果,生活污水达标排放。

3、厂界噪声治理设施

根据检测结果,厂界噪声达标。

4、固体废物治理设施

固体废物全部得到妥善处置或利用。

(二) 污染物排放情况

1、废气

- ①有组织废气:验收检测期间,食堂油烟净化器油烟排放浓度满足《餐饮业大气污染物排放标准》(DB13/5808-2023)小型规模限值要求。
- ②无组织废气:验收检测期间,厂界无组织颗粒物浓度满足《铁矿采选工业污染物排放标准》(GB28661-2012)表7无组织排放浓度限值要求;厂界非甲烷总烃浓度满足《工业企业挥发性有机物排放控制标准》(DB13/2322-2016)表2企业边

验收工作组签名:

第3页共4页

界大气污染物浓度限值要求。车间门口非甲烷总烃浓度满足《工业企业挥发性有机物排放控制标准》(DB13/2322-2016)表 3 标准限值要求,同时满足《挥发性有机物无组织排放控制标准》(GB37822-2019)中附录 A 要求。

- 2、废水:验收检测期间,厂区生活废水排口PH、化学需氧量、悬浮物、氨氮、五日生化需氧量、动植物油检测结果均满足《污水综合排放标准》(GB8978-1996)表4中三级标准限值及曹妃甸城区污水处理厂进水水质要求。
- 3、噪声:验收检测期间,项目北厂界噪声检测点昼间、夜间检测结果满足《工业企业厂界环境噪声排放标准》(GB12348-2008)4类标准限值要求;项目东、南、西厂界紧邻其他企业。

(三) 污染物排放总量

本项目无二氧化硫、氮氧化物排放;根据检测结果,生活污水排口纳管量为化学需氧量 0.0085t/a、氨氮 0.0059t/a,生活污水排入曹妃甸城区污水处理厂。

五、工程建设对环境的影响

根据检测结果可知,各项污染物达标排放,固体废物能够得到妥善处置,满足环评及批复要求,项目建成后未对周围产生明显环境影响。

六、验收结论

唐山埔铭矿业有限公司年产 200 万吨铁精粉尾矿资源综合利用技改项目执行了建设项目环保"三同时"制度,落实了环评及批复中规定的污染防治措施;项目变化情况不属于重大变动;验收检测报告表明,污染物达标排放;项目符合竣工环境保护验收条件,验收工作组同意该项目通过竣工环境保护验收。

七、后续要求

- 1、按照监测计划要求定期开展地下水环境监测;
- 2、加强对环保设施的维护、管理,确保污染物长期、稳定达标排放。

八、验收人员信息

项目竣工环境保护验收工作组名单附后。

唐山埔铭矿业有限公司 2024年12月28日

验收工作组签名:

SM S-

南城 分别儿 数0

第4页共4页

唐山埔铭矿业有限公司年产 200 万吨铁精粉尾矿资源综合利用技改项目

竣工环境保护验收工作组名单

树	* * * * * * * * * * * * * * * * * * *	洛克城	南欧岭	新见	Softmill	A. A.
联系电话	13832839858	18942692082	18630772321	13653255550	15512022831	13930306808
工作单位	唐山埔铭矿业有限公司	河北太硕工程技术咨询有限公司	唐山瑞坤环境检测服务有限公司	唐山市环境监控中心	唐山立业工程技术咨询有限公司	秦皇岛玻璃工业研究设计院有限公司
姓名	姜海东	冯立娟	南洪悦	魏飞	郭雅红	赵军
印第	建设单位	环评单位	检测单位		技术专家	
序号	1	7	3	4	5	9

其他需要说明的事项

1环境保护设施设计、施工和验收过程简况	1
1.1 设计简况	1
1.2 施工简况	1
1.3 验收过程简况	1
1.3.1 生产调试时间	1
1.3.2 验收工作启动	1
1.3.3 验收监测情况	1
1.3.4 自主验收会议情况	2
2 其他环保措施落实情况	2
2.1 制度措施落实情况	2
2.2 配套措施落实情况	2
2.3 其他措施落实情况	3

1环境保护设施设计、施工和验收过程简况

1.1 设计简况

2024年2月,企业委托河北太硕工程技术咨询有限公司编制了《唐山埔铭矿业有限公司年产200万吨铁精粉尾矿资源综合利用技改项目环境影响报告书》,2024年3月19日,唐山市曹妃甸区行政审批局以唐曹审批环书〔2024〕4号文对本项目环境影响报告书进行了批复。环境保护设施的设计符合环评要求。

1.2 施工简况

项目环保设施与主体工程同时建设完成,环保设施建设情况满足环评及批复提出的环境保护要求。

1.3 验收过程简况

1.3.1 生产调试时间

2024年10月10日项目建设完成,2024年10月15日开始调试。

1.3.2 验收工作启动

根据《建设项目环境保护管理条例》,"编制环境影响报告书、环境影响报告表的建设项目竣工后,建设单位应当按照国务院环境保护行政主管部门规定的标准和程序,对配套建设的环境保护设施进行验收,编制验收报告。

2024年11月初,唐山埔铭矿业有限公司参照《建设项目竣工环境保护验收暂行办法》、《建设项目环境影响评价文件审批及建设单位自主开展环境保护设施验收工作指引(试行)》(冀环办字函〔2017〕727号)、建设项目竣工环境保护验收技术规范/指南、环评及其审批意见的相关规定和要求开展项目环保验收工作并进行自查,自查结果表明项目具备验收条件。

1.3.3 验收监测情况

项目由唐山瑞坤环境检测服务有限公司开展验收监测工作,2024年11月22日出具了该项目验收检测报告。

1.3.4 自主验收会议情况

2024年12月28日,唐山埔铭矿业有限公司根据《唐山埔铭矿业有限公司年产200万吨铁精粉尾矿资源综合利用技改项目竣工环境保护验收监测报告》并对照《建设项目竣工环境保护验收暂行办法》,严格依照国家有关法律法规、建设项目竣工环境保护验收技术规范/指南、本项目环境影响报告书和审批部门审批决定等要求对本项目进行验收,验收意见结论如下:

唐山埔铭矿业有限公司年产 200 万吨铁精粉尾矿资源综合利用技改项目执行了建设项目环保"三同时"制度,落实了环评及批复中规定的污染防治措施;项目变化情况不属于重大变动;验收检测报告表明,污染物达标排放;项目符合竣工环境保护验收条件,验收工作组同意该项目通过竣工环境保护验收。

2 其他环保措施落实情况

2.1 制度措施落实情况

(1) 环保组织机构及规章制度

企业设立了环境管理组织机构,负责组织、落实、监督环境保护工作,并 制定有环保管理制度等。

(2) 环境风险防范措施

企业厂区设有灭火器、消防沙、消防锹等应急物资,企业已修编突发环境事件应急预案并备案,备案编号: 130209-2024-141-L。

(3) 环境监测计划

在厂区南侧设立监测井1眼,将定期开展环境监测。

2.2 配套措施落实情况

(1) 区域削减及淘汰落后产能

本技改项目减少了颗粒物排放量,项目不涉及区域削减及淘汰落后产能。

(2) 防护距离控制及居民搬迁

项目不涉及防护距离及居民搬迁等情况。

2.3 其他措施落实情况

- (1) 厂界已安装颗粒物在线监测仪,监测 TSP、PM₁₀、PM_{2.5}。
- (2) 厂区出口设有洗车设施 1 套、精矿库房出口设有洗车设施 3 套, 厂区 内部设有车辆洗车设施 1 套。